

Mass Spectrometer Business Presentation Materials

Hiroto Itoi, Corporate Officer Deputy General Manager of the Analytical & Measuring Instruments Division Shimadzu Corporation

Contents

I. Introduction	
Expansion of Mass Spectrometry	p.3
History of Shimadzu's Growth in Mass Spectrometry	p.5
II. Overview of Mass Spectrometers	
Operating Principle, Demand Trends, and Vendors	. p.9
• Mass Spectra	-
Configuration of Mass Spectrometers	
• Ionization	p.12
Mass Separation	p.14
III. Shimadzu's Mass Spectrometer Business	•
• Product Type	p.17
Application Software	
Growth Strategy for Mass Spectrometer Business	p.19
Expand/Improve Product Lines	p.20
Measures to Expand Application Fields	
Measures to Automate Data Processing Using AI	-
IV. Summary	
• Future Direction	p.26

Expansion of Mass Spectrometry (1)

Why Mass Spectrometry?

Mass spectrometry is able to analyze a wide variety of compounds with high accuracy and high efficiency (simultaneous multicomponent analysis). It offers superior characteristics that are especially beneficial in the following fields, where demand continues to expand.

✓ Analysis of biological molecules

Amino acids, proteins, lipids, sugars ——Drug discovery

✓ Analysis of hazardous trace substances remaining in the environment

Dioxins, pesticides, veterinary drugs, volatile organic compounds (VOCs)

✓ Materials research

New material development, functional enhancement of materials, etc.

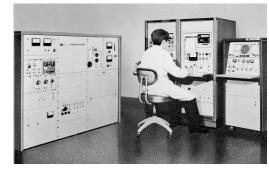
Expansion of Mass Spectrometry (2)

How Did the Mass Spectrometry Develop?

- ✓ Mass spectrometry started being researched at the beginning of the twentieth century, for analyzing isotopes of inorganic elements in Europe and the United States.
- √ 1950s-1960s: Mass spectrometry progressed to analyzing organic compounds, such as fossil fuels, synthetic compounds, and biological molecules.
- ✓ 1970s: Combined with chromatography, mass spectrometry development progressed significantly when the characteristics of both technologies were merged.
- √ 1980s: Advancements in computerization resulted in dramatic improvements in instrument control and data processing capabilities.

In Which Fields Will Mass Spectrometry Use Increase?

- ✓ Fields with hazardous chemical substance regulations (foods, environmental testing, banned substances, etc.)
- ✓ Healthcare fields: Development of biopharmaceuticals and other drugs, examination of diseases, etc.
- ✓ Functionally engineered materials and functionally enhanced food fields



History of Shimadzu's Growth in Mass Spectrometry (1)

		Magnetic Sector MS	Events	
	About 1965	Started preliminary investigation of mass spectrometry.	1965 Shinichiro Tomonaga wins the Nobel Prize in Physics.	
	1969	Shimadzu collaborates with LKB of Sweden to introduce the LKB-9000 , the first <u>magnetic</u> <u>sector</u> GCMS system in Japan.	1969 Apollo 11 lands on the Moon.	
Period I	1971	LKB-9000 production starts at Shimadzu, with first system delivered to the Hokkaido Industrial Research Institute.		
Per	1972 Released the GCMSPAC-300 GCMS data processing system.		1972 Japan-China Joint Communiqué 1973 First oil crisis	
	Late 1970s	Mass spectrometry advancements based on LKB-9000 technology resulted in successive development of GCMS-6020 , GCMSPAC-90 , and other products.	1975 Vietnam War ends 1976 Lockheed bribery scandals	
	Around 1978	Started developing key technologies for quadrupole mass spectrometry.	1978 China-Japan Treaty of Peace and Friendship signed.	

GCMS-6020

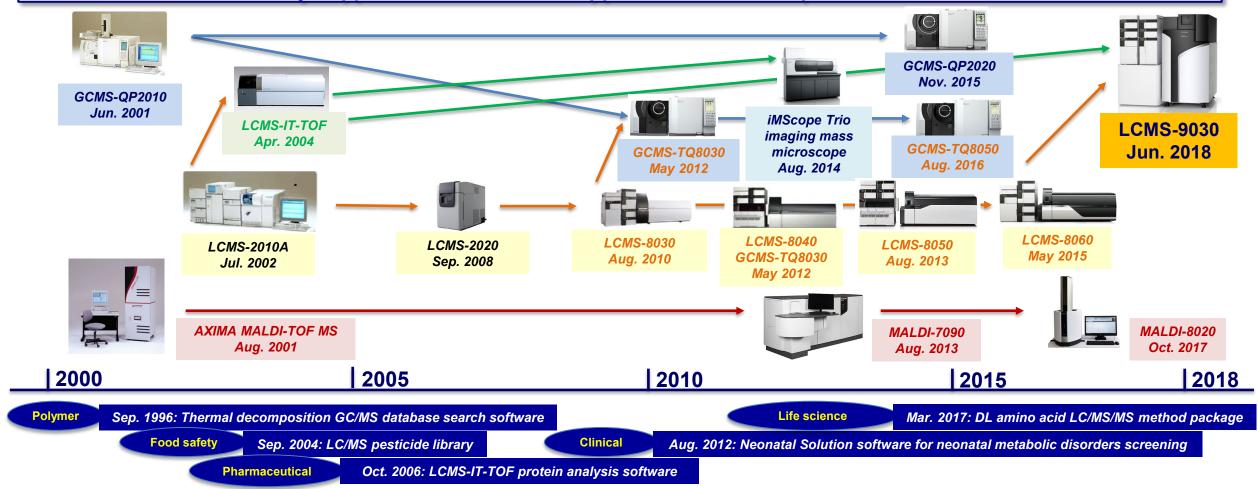
History of Shimadzu's Growth in Mass Spectrometry (2)

,	(continued)				
(continued)		GCMS/LCMS	MALDI-TOF MS	Events	
	1982	Release of the GCMS-QP1000 , the first quadrupole GCMS system, which receives a large market response.	R&D on the laser ionization mass spectrometer started, with Koichi Tanaka joining the development team in 1983.	1981 Kenichi Fukui wins the Nobel Prize in Chemistry.	
	1987		Released the LAMS50K.	1985 Plaza Accord 1986 Chernobyl Nuclear Accident	
	1988	Released the LCMS-QP1000 quadrupole system (with some technology adopted).		1987 Susumu Tonegawa wins the Nobel Prize in Physiology or Medicine.	
	1989		Purchased Kratos of the Ur. LAMS50K	1990 East and West Germany united. 1991 Gulf War starts.	
	1992	Released the GCMS-QP5000.		Soviet Union collapses.	
Period II	1994	— GCMS-QP1000	Released KOMPACT-MALDI I MALDI-TOF MS system via Kratos.	1995 Great Hanshin Awaji Earthquake Tokyo subway sarin attack	
Per	1997	Released the LCMS-QP8000.	_	1999Euro established as a unified European currency.	
	2001	Released the GCMS-QP2010.	Released AXIMA MALDI-TOF MS system via Kratos.	2001 September 11 terrorist attacks in the United States	
	2002	Released the LCMS-2010 . LCMS-QP1000	Koichi Tanaka wins the Nobel Prize in Chemistry for developing the matrix-assisted laser desorption/ionization (MALDI) method.	China joins WTO. 2003 Iraq War	
	2004	Released the LCMS-IT-TOF .		2007 Global financial crisis (subprime lending)	
	Around 2007	Started developing technologies for triple quadrupole mass spectrometry.	MALDI-TOF AXIMA	2008 Yoichiro Nambu wins the Nobel Prize in Physics with two others and Osamu Shimomura the Nobel Prize in Chemistry.	

History of Shimadzu's Growth in Mass Spectrometry (3)

(continued)		GCMS/LCMS/ICPMS	MALDI-TOF MS	Events	
	2010	Released the LCMS-8030 , the first triple quadrupole LCMS system.	Started supplying MALDI-TOF MS systems to bioMērieux in France.	2011 China becomes the second largest economy in the world.	
	2012	Released the GCMS-TQ8030 and LCMS-8040 triple quadrupole systems.	_	Great East Japan Earthquake 2012 Shinya Yamanaka wins the Nobel Pri	
	2013	Released the LCMS-8050 triple quadrupole system.	MALDI-7090 (high resolution)	in Physiology or Medicine.	
Period III	2014	Released the GCMS-TQ8040 triple quadrupole system.	Released the iMScope imaging mass microscope (based on IT-TOF technology).	2014 Crimean Crisis Isamu Akasaki wins the Nobel Prize in Physics with two others.	
	2015	Released the LCMS-8060 and GCMS-QP2020 triple quadrupole systems.		2015 Diplomatic relations restored between the United States and Cuba.	
	2016	Released the ICPMS-2030, and the LCMS-8045 and GCMS-TQ8050 triple quadrupole systems.		2016 Britain announces departure from the EU.	
	2017	Released the DPiMS-2020.	Released the MALDI-8020 (compact tabletop model).	2017 Trump is inaugurated as President of the United States.	
Al po	2018	Developed the high-resolution market by releasing the first <u>LCMS-9030 quadrupole time-of-flight</u> LCMS system.	_		
Period					

iMScope



M

History of Shimadzu's Growth in Mass Spectrometry (4)

Shimadzu has constantly accumulated state-of-the-art key technologies by continuously researching, developing, and adopting new technologies. By integrating such technologies, Shimadzu has released new products in a timely manner and simultaneously supplied market-oriented applications to develop new demand.

II. Overview of Mass Spectrometers Operating Principle, Demand Trends, and Vendors

Principle of Mass Spectrometry

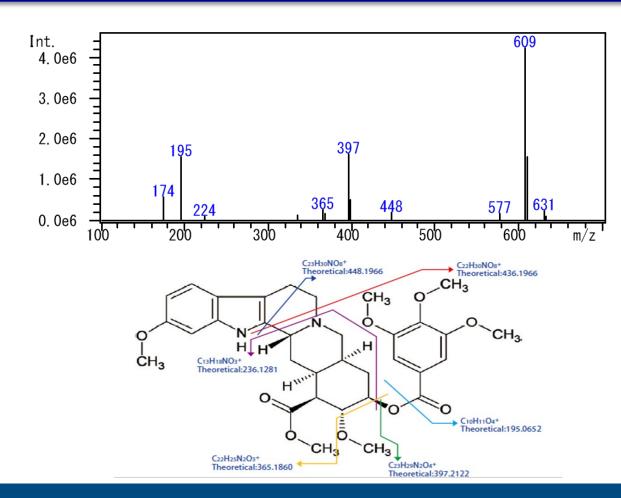
Mass spectrometers 1) ionize molecular compounds, 2) electrically or magnetically separate the compounds by the type of mass/charge (m/z) ratio, and 3) detect the separated ions. The resulting mass spectra (with detection intensity, which indicates the concentration contained, plotted on the vertical axis for each m/z ratio, which indicates the mass type, on the horizontal axis) provide information that is extremely useful for identifying known substances or determining the structure of unknown substances.

Product Types and Demand Trends

There are basically nine types of mass spectrometers, which use different mass separation methods. **►** *p.* 17

Due to efforts to increase sensitivity and resolution, demand has been expanding (6 % to 7 % CAGR is predicted for the next five years).

Global Vendors


In addition to Shimadzu, there are five other major global vendors, including four from the United States and one from Germany. • p. 17

Vendors are expected to offer comprehensive capabilities, including sophisticated technology, diverse applications, and extensive maintenance and service capabilities. Consequently, barriers to new entry are considered very high.


Mass Spectra

Mass spectra are the data obtained from mass spectrometers. The mass spectrum below shows the presence of reserpine (a tranquilizer or an antihypertensive drug) at an m/z value of 609.2802.

Configuration of Mass Spectrometers

II. Overview of Mass Spectrometers Ionization (1)

To expand the range of compound types that can be analyzed by mass spectrometry, a variety of ionization methods have been suggested and used in practical applications.

■ Generate ions in a gas phase.

Electron impact (EI) ionization → GCMS

Advancements toward biochemistry

Chemical ionization (CI) → GCMS Atmospheric pressure chemical ionization (APCI): LCMS Atmospheric pressure photoionization (APPI): LCMS Toward achieving even more sophisticated analysis, such as of chemical modifications

- >MS/MS
- ➤ High resolution
- > Improved quantitative sensitivity

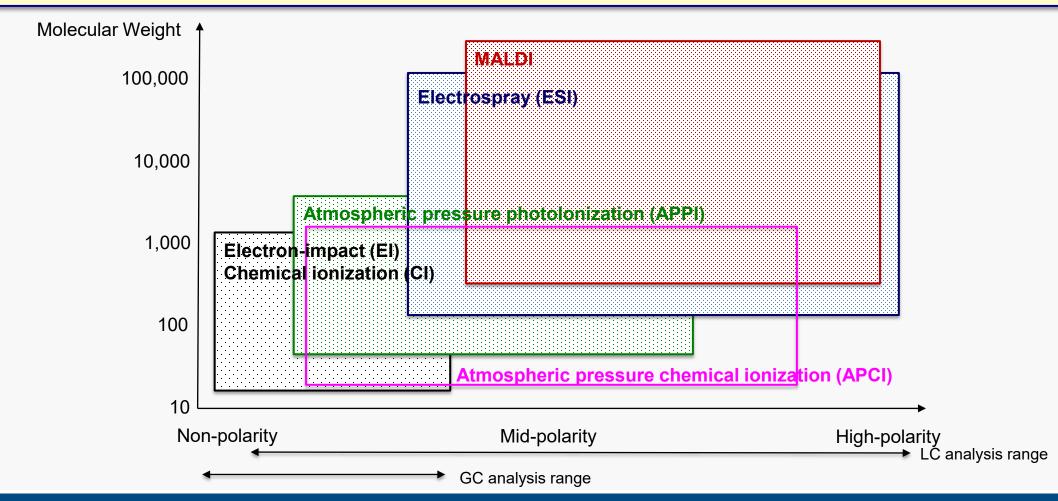
■ Generate ions in a liquid phase (spray methods).

Thermospray

Electrospray: LCMS

Generate ions in a solid phase (desorption methods).

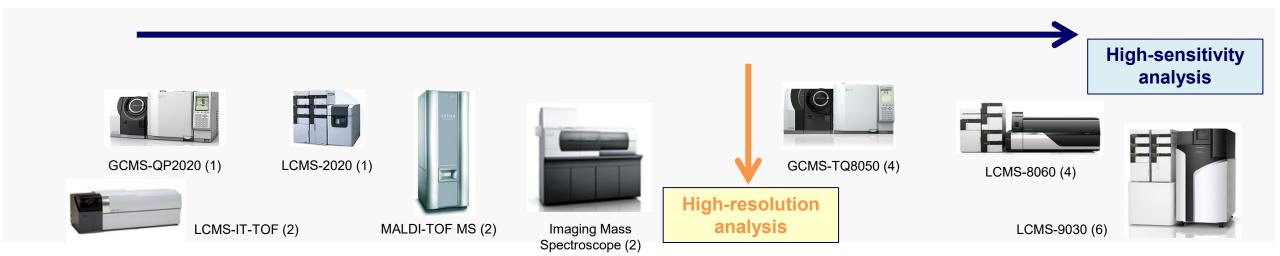
Field desorption (FD)


Fast atom bombardment (SIMS/FAB)

Matrix assisted laser desorption/ionization: MALDI and iMScope

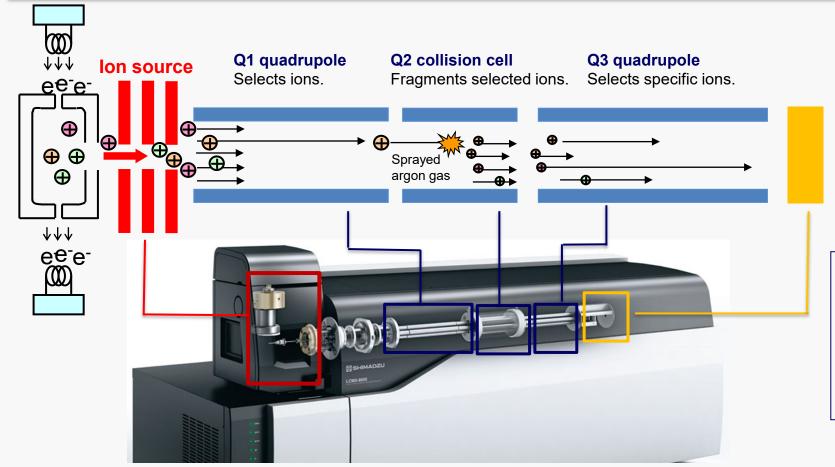
II. Overview of Mass Spectrometers Ionization (2)

The number of fields that use mass spectrometry has been expanding, such as for analyzing polymer compounds.



Mass Separation (1): Classification by Separation Method

By developing practical applications for a wide variety of separation methods, applications for mass spectrometry have expanded from general purpose fields, such as environmental testing and food safety, to more advanced fields, such as drug discovery and healthcare, which require especially high sensitivity and high resolution.


	MS	MS/MS
General-Purpose Analysis	(1) SQ (single quadrupole) model	(4) TQ (triple quadrupole) model (5) Ion-trap model
High-Resolution Analysis	(2) TOF (time-of-flight) model (3) Magnetic sector model	(6) Q-TOF (triple quadrupole time-of-flight) model (7) Orbitrap model

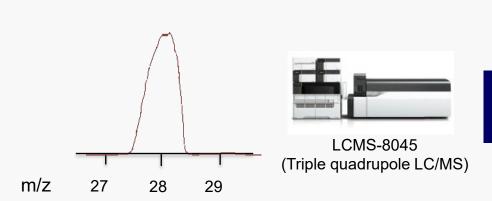
Mass Separation (2): Principle of MS/MS Mass Spectrometry

The ions separated in Q1 are fragmented in Q2 and the ion fragments are then separated in Q3. The system can differentiate between molecules with the same molecular weight, based on how the molecules fragment. It can also quantitate trace quantities and predict the structure of molecules.

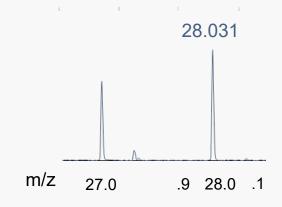
Detector

Measures the number of ions with a specific mass.

MS/MS detects CO, N_2 , and C_2H_4 as indicated below.


CO: C(12)/O(16)

N₂: N(14)


 C_2H_4 : $C_2H_3(27)$

Mass Separation (3): High Resolution

High-resolution analysis

Quadrupole and other mass spectrometers can determine integer information about molecular weight, such as a molecular weight of 28, which is the weight of CO, N_2 , and C_2H_4 , for example, but they cannot identify exactly which of those molecules are in the substance. P.15 Therefore, quadrupole mass spectrometers are best suited for quantitative analysis of known samples.

Mass spectrometers with high-resolution functionality, such as time-of-flight models, are able to analyze molecular weight to the 1/1000 level. By comparing the data to molecular weight data CO=27.9949, $N_2=28.0062$, and $C_2H_4=28.0312$, for example, the substance can be identified as C_2H_4 . In particular, Q-TOF models, which are combined with an MS/MS mass spectrometer, can be used for not only accurate qualitative analysis and structural analysis, but also quantitation of trace quantities.

III. Shimadzu's Mass Spectrometer Business Product Type: Models Offered by Shimadzu

The market size in 2017 was an estimated \$5.4 bil. . Shimadzu offers an extensive product line for satisfying a broad range of market demand.

Note: Model types offered by Shimadzu are indicated in blue.	Model	Major Vendor	Major Field
Quadrupole LCMS	Triple quadrupole LCMS Single quadrupole LCMS	Shimadzu, DHR, A, WAT, TMO	Pharmaceuticals, CROs, universities, hospitals, biotechnology
Time-of-Flight LCMS	Q-TOF, LC-TOF	Shimadzu, WAT, DHR, BRKR, A	CROs, pharmaceuticals, biotechnology, universities, foods
Trap LCMS	Orbitrap, Ion trap LCMS FT-ICR	TMO, BRKR	Biotechnology, universities, CROs, pharmaceuticals
GCMS	Single quadrupole GCMS Triple quadrupole GCMS lon trap GCMS, TOF GCMS	Shimadzu, A, TMO, PKI, BRKR	Environmental testing, governmental institutions, foods, universities, petrochemicals, general chemicals
MALDI-TOF	MALDI-TOF, MALDI-TOF/TOF, MALDI-Q-TOF	Shimadzu (Kratos), BRKR, DHR	Biotechnology, hospitals, universities, CROs
Magnetic Sector	Isotope ratio, double focusing	TMO, JEOL	Universities, environmental testing, governmental institutions
ICP-MS	Single quad ICP-MS Triple quad ICP-MS	Shimadzu, A, TMO, Hitachi	Electronics/semiconductors, environmental testing, governmental institutions
Leak Detector	_	Shimadzu, IFCN, PFV, A	Electronics/semiconductors, environmental testing, general chemicals
Other	IMS, SIMS, Portable, etc.	_	
Total		_	

TMO: Thermo Fisher Scientific, Inc., DHR: Danaher Corporation, A: Agilent Technologies, Inc., WAT: Waters Corporation, PKI: PerkinElmer, Inc., BRKR: Bruker Corporation IFCN: INFICON Holding AG, PFV: Pfeiffer Vacuum GmbH

III. Shimadzu's Mass Spectrometer Business Application Software

Shimadzu offers an extensive selection of application software and databases in an effort to provide user convenience and increase added value in mass spectrometers.

Foods

GC/MS method package for residual pesticides in foods Ver. 2

LC/MS/MS method package for residual pesticides Ver. 3

LC/MS/MS method package for aminoglycoside antibiotics

LC/MS/MS method package for mycotoxin

Environmental

Smart Environmental Database

Screening system for phthalate esters **Note: Compliant** with RoHS (II) Directive

LC/MS/MS method package for water quality analysis

Clinical research

Neonatal Solution Ver. 2.30 (neonatal metabolic disorders screening

LabSolutions Insight multianalyte quantitation

Pharmaceuticals

Life science

Smart Metabolites Database

LC/MS/MS method package for primary metabolites Ver. 2

LC/MS/MS method package for lipid mediators Ver. 2

LC/MS/MS method package for cell culture profiling

software

Quick-DB GC/MS/MS Toxicological drugs forensic toxicological

database

LC/MS/MS rapid toxicology screening system Ver. 2

LC/MS/MS toxicological database

III. Shimadzu's Mass Spectrometer Business Growth Strategy for Mass Spectrometer Business


Units: Billions of yen	FY 2019 Medium-Term	FY 2016	F	Y 2019 vs. FY 201	6
	Plan Target		Increase	Percent Increase	CAGR
Analytical & Measuring Instruments	253.0	209.2	43.8	20.9%	6.5%
Mass Spectrometers (MS)	45.0	33.9	11.1	32.9%	9.9%

Medium-Term Management Plan: Growth Strategy for Mass Spectrometer Business

- 1) Expand/improve product lines, such as MS products for rapid screening or high resolution.
- 2) Develop expert systems based on using Al and ICT technologies for sophisticated data processing and analysis.
- 3) Expand business based on expanding the range of MS application fields (such as molecular diagnostics and cellular analyses).

III. Shimadzu's Mass Spectrometer Business
Expand/Improve Product Lines (1): LCMS-9030 Q-TOF

III. Shimadzu's Mass Spectrometer Business Expand/Improve Product Lines (2): LCMS-9030 Q-TOF

1) High Resolution

Identifies compounds with high reliability: Resolution is greater than 30,000 FWHM at m/z 1,972.

2) High Accuracy

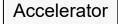
Identifies masses with high accuracy: Mass accuracy within 1 ppm at m/z 622.5662

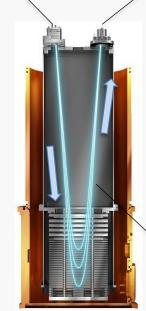
Maintains high mass accuracy even after operating continuously for long periods in an environment with temperature variations: Maintains 1 ppm mass accuracy after operating continuously for 24 hours in an environment with 6 °C temperature variations.

4) High Operability

Simple operability: Uses highly rated LabSolutions LCMS software, which has an extensive track record in LC, GC, and quadrupole LCMS systems.

New Fields Being Developed for Q-TOF Mass Spectrometers		
Biopharmaceuticals	Characterization of biopharmaceuticals, identification of impurities, etc.	
General Structural Analysis	Structural analysis of impurities in pharmaceuticals and synthetic chemical substances	
Food Safety, Environmental Testing, Forensics	Screening for unknown compounds, etc.	
Omics Analysis	Biomarker discovery, etc.	

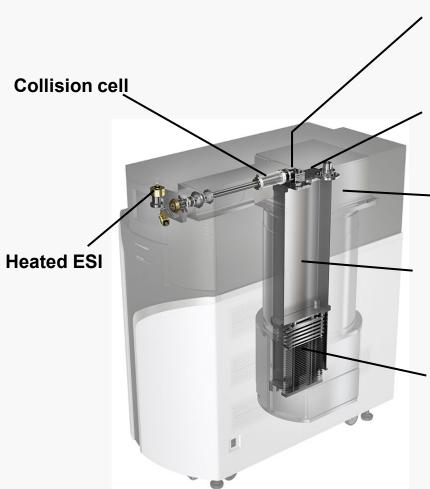



Expand/Improve Product Lines (3): LCMS-9030 Q-TOF

Effortless Performance

—High Resolution, High Mass Accuracy, and High Sensitivity—

Detector



TOF (time-of-flight) model

lons fly a given distance toward the detector and ions with a smaller m/z value successively reach the detector first. m/z values are determined very accurately by measuring the time required for ions to reach the detector.

Ion beam

Internal Configuration of Q-TOF Mass Spectrometers (Reflectron)

UFgrating[™] (patented)

High-strength miniature grating electrode achieves high sensitivity and high resolution.

Funnel MCP

Detects all ions that reach the detector, without any losses.

High-speed digitizer

High-speed data acquisition at up to 100 Hz

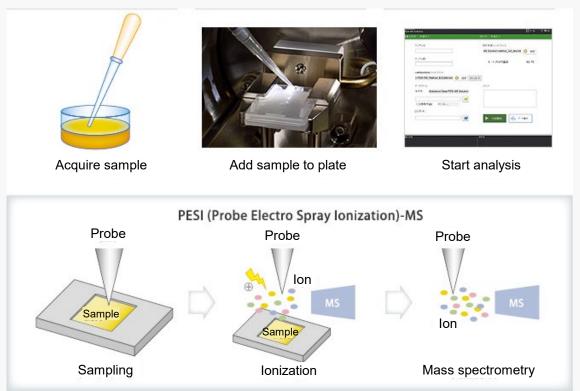
High-precision temperature control system (patented)

Maintains consistent mass accuracy for long periods.

iRefTOF™ (patented)

This ideal reflectron with an optimized electric potential distribution offers high resolution and high sensitivity.

Expand/Improve Product Lines (4): DPiMS-2020


In September 2017, Shimadzu released the DPiMS-2020 mass spectrometer, which directly ionizes samples with a probe. That eliminates the need for complicated pretreatment operations.

The system is promoted in fields that require rapid analysis, such as emergency medicine and forensics. In the future, we will also target cancer and other surgical applications (for support with deciding what areas to remove).

That will establish a new application for mass spectrometry.

DPiMS-2020 Probe Electrospray Ionization Mass Spectrometer

Measures to Expand Application Fields

Introducing Mass Spectrometry for IVD Applications

In vitro diagnostics (IVD) is used to diagnose diseases by examining the blood, urine, stool, saliva, or other liquids (minimally invasive liquid biopsies).

Why Use Mass Spectrometry?

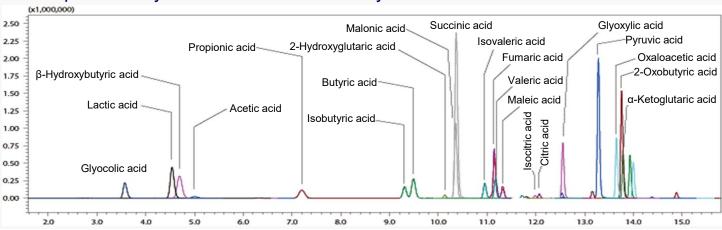
- 1) It results in a smaller percent of false negatives and positives than conventional methods. (It measures the relevant molecules directly.)
- 2) It enables simultaneous examination of multiple targets (measuring multiple target molecules at the same time).
- 3) Low operating cost (It does not involve using a special reaction reagent.)
 - Mass spectrometry has been used for drug screening, forensic toxicology tests, and sports doping screening from an early stage.
 - Toperating cost is low, but issues remain with high initial investment cost, skill required for operating the system and data analysis.

Examinations That Already Use Mass Spectrometry

- 1) Newborn screening (NBS): Covered by Japanese national insurance for specific analysis
- 2) Therapeutic drugs:
 - Covered by insurance for managing drug administration by measuring drug concentrations in the blood
- 3) Bacteriological testing: Covered by insurance for testing for microorganisms that can cause infectious diseases
- 4) Testing for endocrine substances (vitamin D and catecholamine): LCMS is anticipated as a potential testing method.

Measures to Automate Data Processing Using Al

The MS chromatogram below is from using the LC/MS/MS method package for short-chain fatty acids to analyze 21 related components. By using the simultaneous multicomponent analysis capability, progress has been made in introducing mass spectrometry even in such metabolomic analysis fields (comprehensive analysis of biological metabolites).



However, due to the massive amounts of data that can be acquired after increasing instrument performance, customers are looking for increased automation for saving time and data analysis functionality that eliminates the need for experience and expertise.

We are currently collaborating with Fujitsu to develop automatic peak-picking (identifying the width and height of peaks) functionality based on using deep learning, which is a type of Al. The aim is to achieve high-precision and fast data analysis software that does not depend on operator experience or expertise.

Mass Spectrometry Data for Short-Chain Fatty Acids

IV. Shimadzu's Mass Spectrometer Business Summary

Future Direction

- 1) Relentlessly pursue high sensitivity and high resolution.
 - ⇒ Satisfy high-end needs, such as for new drug development.
- 2) Reduce instrument size, make them easier and less time-consuming to operate, and automate data analysis using Al technologies.
 - ⇒ Expand routine applications, such as healthcare examinations and quality control testing.
 - ⇒ Enter the smart cell industry (industrial use of cell products).
- 3) Build extensive selection of mass spectrometer applications.
 - ⇒ Promote joint development consistent with global demand, mainly at innovation centers.
- 4) Develop advanced healthcare technologies.
 - ⇒ Launch the Healthcare R&D Center for promoting joint research with researchers world-wide (construction scheduled for completion in January 2019).

Excellence in Science

This document contains forward-looking statements. Forecasts of future business performance that appear in this document are predictions made by the company's management team that are based on information available when these materials were prepared and are subject to risks and uncertainties. Consequently, actual results may differ materially from the forecasts indicated above. Factors that may influence actual business performance include, but are not limited to, economic conditions within and outside Japan, changes in technologies in markets, and fluctuations in exchange rates.