

LCMS-9030 High Performance Liquid Chromatograph Mass Spectrometer

Application News

Screening Analysis of Metabolites in Red Wine

Y. Umakoshi and T. lida

User Benefits

- The LCMS-9030 is ideal for screening metabolites in food.
- ◆ LabSolutions Insight Explore[™] can rapidly screen for metabolites.
- Given the compound name and composition formula information, any compound can be specified as a screening target.

■ Introduction

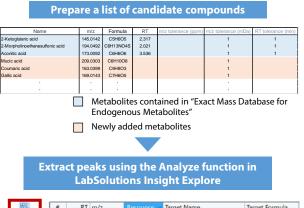
Metabolomics, a technology for comprehensively analyzing all metabolites in living organisms, has attracted attention in recent years. It is also used in food research to evaluate taste, quality, and nutritional value. High-resolution mass spectrometers are frequently used for metabolomics, but the data analysis process becomes a bottleneck for research because of the large amount of data.

This article describes an example of a screening analysis of metabolites in red wine using an LCMS-9030 quadrupole timeof-flight (Q-TOF) mass spectrometer (Fig. 1). The Screen function in LabSolutions Insight Explore was used to predict metabolites in the wine sample. By preparing a list of candidate compounds for precursor ions, samples can guickly be screened for metabolites.

Fig. 1 Nexera[™] X3 and LCMS-9030

Analytical Conditions

Nexera[™] X3 UHPLC and LCMS-9030 systems were used as the analytical instruments. The LC method included in "LC/MS/MS Method Package for Primary Metabolites" was used as the method. The data-dependent acquisition (DDA) mode was used to simultaneously acquire precursor m/z and MS/MS data. Table 1 shows the analytical conditions.


Table 1 Analytical Conditions

[HPLC conditions] (Nexe	era X3)			
Column:	Reverse-phase column			
Column Oven:	40 °C			
Solvent A:	0.1 % Formic acid in water			
Solvent B:	0.1 % Formic acid in acetonitrile			
Mode:	Gradient elution			
Flowrate:	0.25 mL/min			
Injection Volume:	3 μL			
[MS conditions] (LCMS-9	9030)			
lonization:	ESI, negative			
Mode:	Data dependent acquisition (DDA)			
Nebulizing Gas Flow:	3.0 L/min			

Mode:	Data dependent acquisition (DDA)
Nebulizing Gas Flow:	3.0 L/min
Drying Gas Flow:	10.0 L/min
Heating Gas Flow:	10.0 L/min
DL Temp.:	250 °C
Block Heater Temp.:	400 °C
Interface Temp.:	300 °C
CID Gas Pressure:	230 kPa

Metabolite Screening Workflow

The workflow for metabolite screening is shown in Fig. 2. First, a list of candidate compounds for screening was prepared. In this case, the list was created based on the primary metabolites contained in the "Exact Mass Database for Endogenous Metabolites." That database contains retention time and exact mass information for metabolites previously included in LC/MS/MS series method packages. In addition, some metabolites were also added to this list. As long as the compound name and composition formula information is available, any compound can be easily specified as a screening target. Then the LCMS-9030 system was used to acquire data and extract peaks using the Analyze function in LabSolutions Insight Explore. Finally, the Screen function was used to load the prepared list and screen for metabolites.

100	#	RT	m/z	Response	Target Name	Target Formula
Analyze		•	•	•	Available 🔻	100
ER.	187	3.048	191.01934	8459757	Isocitric acid	C6H8O7
Predict	188	3.048	191.01934	8459757	Citric acid	C6H8O7
Predict	392	8.144	197.04500	5494833	Ethyl gallate	C9H10O5
T	219	3.596	129.01897	5023289	Citraconic acid	C5H6O4
Group	377	7.732	477.06673	4457612	Quercetin-3-O-glucuronide	C21H18O13
La	233	3.835	117.01904	4142619	Succinic acid	C4H6O4
pectrum	198	3.142	133.05026	4037351	Deoxyribose	C5H10O4
CAT.	115	2.196	133.01400	2453660	Malic acid	C4H6O5
A	144	2.566	89.02417	2257844	Lactic acid	C3H6O3
omatogram	214	3.475	128.03492	1795311	Pyroglutamic acid	C5H7NO3
\$	171	2.870	133.05025	1737846	Deoxyribose	C5H10O4
Advanced	58	1.642	195.05087	1383298	Gluconic acid	C6H12O7
do la	397	8.302	507.11369	1334415	Syringetin-3-O-galactoside	C23H24O13
Screen	136	2.389	145.01392	1236215	2-Oxoglutaric acid	C5H6O5

Screen for metabolites using the prepared list Fig. 2 Metabolite Screening Workflow

Sample Pretreatment

Five types of red wines from different origins were mixed in equal amounts for use as the sample. For pretreatment, the wine mixture was centrifuged (12,000 rpm, 5 min, 4 °C) and the supernatant was diluted 10-fold with ultrapure water.

■ Comprehensive Analysis of Metabolites in Wine by LCMS-9030

When red wine was analyzed in the negative mode, a base peak chromatogram was obtained as shown in Fig. 3.

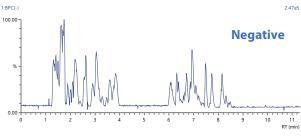


Fig. 3 Base Peak Chromatogram of Red Wine Sample

Using the Analyze function in LabSolutions Insight Explore, 455 peaks were extracted. Using a prepared m/z list for about 500 compounds, metabolites were screened with a mass error of 1 mDa. As a result, 90 of the 455 peaks were labeled with a candidate compound name. In the negative mode, many organic acids were detected, such as citric acid, succinic acid, and gallic acid. Some flavonoids such as quercetin 3-Oglucuronide were also detected.

Verification of Screened Compounds

The following shows fragment assignment results for gallic acid (retention time 6.385 min, m/z 169.01390) and the confirmation results using the standard. As shown in Fig. 4, gallic acid was predicted with high mass accuracy (error -0.35 mDa).

	RT	m/z	Response ~	Target Name	Target Formula	Target m/z	Mass Error (mDa)
	Ŧ	•	T	Available 🔻	Ŧ	T	•
119	2.225	191.01936	1159690	Citric acid	C6H8O7	191.01970	-0.34
43	1.600	209.02996	1120974	Mucic acid	C6H10O8	209.03029	-0.33
296	6 5 90	161.04530	1002201	the descence of he had a based on a stat	C6U1005	161.04555	0.25
269	6.385	169.01390	936758	Gallic acid	C7H6O5	169.01425	-0.35
374	7.669	189.07634	900018	Hydroxysuberic acid	C8H14O5	189.07660	-0.26
175	2.901	129.01896	881913	Citraconic acid	C5H6O4	129.01933	-0.37

Fig. 4 Wine Screening Results

When an online search (Assign function) was conducted using the ChemSpider database for the composition formula $C_7H_6O_{57}$ gallic acid was found as a top candidate compound. The results of automatic assignment of MS/MS fragments are shown in Fig. 5 and the predicted fragments are shown in Fig. 6.

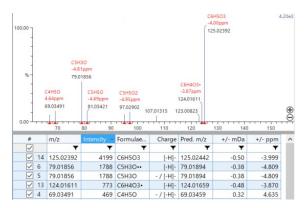


Fig. 5 Results of Automatic Assignment of MS/MS Fragments

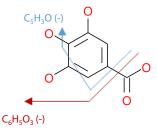
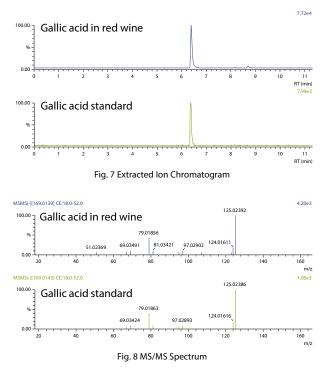



Fig. 6 Predicted Fragments of Gallic Acid

Finally, results from analyzing a gallic acid standard are shown. The retention time of the gallic acid standard on the extracted ion chromatogram is consistent with that of the predicted compounds in red wine (Fig. 7). The MS/MS spectrum pattern also matched (Fig. 8).

Screening results were verified by analyzing the standard as described above.

Conclusion

In this study, red wine was analyzed with an LCMS-9030 quadrupole time-of-flight mass spectrometer to screen for metabolites related to functionality and taste. By preparing a list of candidate compounds for precursor ions, 90 compounds were predicted from the negative mode data. In addition, the screening results for gallic acid were verified using the standard. Gallic acid is a phenolic antioxidant that is said to have anticancer benefits. Also, the organic acids detected in this analysis are closely related to the taste of wine.

This workflow enables rapid metabolite screening. Any compound with known name and composition formula information can be easily specified as a screening target.

LabSolutions Insight Explore, and Nexera are trademarks of Shimadzu Corporation in Japan and/or other countries.

Shimadzu Corporation

Analytical & Measuring Instruments Division **Global Application Development Center**

www.shimadzu.com/an/

01-00329-EN First Edition: Mar. 2022

For Research Use Only. Not for use in diagnostic procedures. This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu See http://www.shimadzu.com/about/trademarks/index.html for details Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they

are used with trademark symbol "TM" or " \mathfrak{B} ". Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice