Atomic Absorption Spectrophotometers

Double-Beam Optics and Stable Hardware Achieve Superior Stability

The AA-6880 Series incorporates newly developed 3D double-beam optics.
The optical system has been designed to produce maximum performance for each measurement method through optimal adjustment of the light beam and light beam digital filter, and by using optical components that restrict light losses.

Advantages of the Double-Beam System

Long-term stability

The graph shows the results of measurements on 2 ppm copper (Cu) conducted over at least one hour. (The plot shows mean values for 11 repeated measurements.) Over the course of more than 600 measurements, the instrument achieved a relative standard deviation within 1%.

High sensitivity

The graph shows the direct measurement results for 0.1 ppm lead (Pb).

Support for Developing Analytical Conditions

Automatic gas flow rate optimization

Automatic searching for optimal fuel gas flow rate (Japanese Patent 2099886). It is important to determine the optimal gas flow rate for the flame when using an organic solvent or after changing the burner height. The AA-6880F Series automatically optimizes the gas flow rate by measuring the changes in absorbance between a blank and a standard sample. The difference between the two is displayed on the screen. The gas flow rate achieving the highest sensitivity is detected and this value is automatically set as the gas flow rate value.

Optional Autosampler Reduces Analysis Workload

Low carryover

Great care must be taken to avoid carryover during flame analysis. The new ASC-6880 autosampler rinses the nozzle at the rinsing port on the overflow mechanism after each sample measurement is complete. This ensures 10-4 max. carryover during measurements of multiple samples. The graph shows the results of consecutive analyses of 10 ppm, 20 ppm, and 50 ppm sodium (Na) standard solutions in the EMISSION mode. No carryover could be detected when measuring the 10 ppm standard sample immediately after measuring the 50 ppm Na standard sample.

Trace Sample Analysis Using Micro Sampling

Micro sampling

At least 1 mL (1000 μL) volume of a liquid sample is required for the continuous intake of sample during normal flame analysis. With micro sampling, however, approximately 50 to 90 μL of sample is injected in one shot into the flame and quantitation is based on the height and area of the peak signal obtained. This method offers the advantages listed below.


  • Permits analysis of small sample volumes .
  • Multi-element analysis of small sample volumes .
  • No blockage of burner slot with samples having a high salt concentration .
  • Synchronized with the autosampler for auto-dilution measurements

* Synchronization with the autosampler requires the optional micro sampling kit.


Example of micro sampling analysis

Examples of the measured waveforms (overlaid) and calibration curve for micro sampling analysis are shown to the right. A 2-ppm Cu standard solution was prepared by auto-dilution using the autosampler. The autosampler can also be used to conduct dilution measurements of the sample. (Injection volume: 90 μL)

For Research Use Only. Not for use in diagnostic procedures.

This page may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

Top of This Page