

### **Application** News

X-ray Analysis

### Quantitative Analysis of Waste Oil by EDX-7000

# No.X253

In recent years, elemental analysis by EDX has been increasing due to the heightened concern for the environment. Even waste oil can quickly and easily be analyzed by EDX by merely pouring it as is into a container.

We evaluated the repeatability and limit of detection in analysis using new, unused commercially available general oil that is similar waste oil using the EDX-7000. The results demonstrated an improvement in sensitivity that was 1.5 to 4 times that obtained with the conventional model\*1, while achieving a shorter measurement time for each sample.

\*1: Shimadzu Application News No.X242

#### Sample

Wear Metals in 75 cSt Hydrocarbon Oil A23-10, 30, 50, 100, 300, 500 (each 10, 30, 50, 100, 300, 500 ppm) Conostan Base Oil (0 ppm)

#### Elements

22Ti, 23V, 24Cr, 28Ni, 29Cu, 30Zn, 47Ag, 48Cd, 50Sn, 51Sb, 56Ba, 82Pb

#### Sample Preparation

Approximately 8 mL of sample was placed as is in a container covered with 5-µm thick polypropylene film. Analysis was then conducted.

A photograph of the sample is shown in Fig. 1.



Fig. 1 Sample Preparation

#### Qualitative Analysis, Lower Limits of Detection (L.L.D.)

The spectral profiles for the elements of interest are shown in Fig. 2. The following expression was used to calculate the theoretical lower limits of detection from the spectral intensities (NET, BG) of A23 – 50. The results are shown in Table 1.

In addition, intensity overlap correction was applied when there was overlapping with coexisting elements such as Ti, V, Cr, etc.

$$L.L.D. = 3 \cdot \frac{C}{NET} \sqrt{\frac{BG}{T \cdot A}}$$
 C: Concentration in oil [indicated the concentration of the concentratio

Intensity [cps/µA]

C : Concentration in oil [ppm]

A : Current value [μA]

Table 1 Theoretical Lower Limits of Detection

| lable i medicula Lower Limits of Detection |                  |             |                  |                  |      |      |               |      |      |      |      | [ppm] |
|--------------------------------------------|------------------|-------------|------------------|------------------|------|------|---------------|------|------|------|------|-------|
| Element                                    | <sub>22</sub> Ti | 23 <b>V</b> | <sub>24</sub> Cr | <sub>28</sub> Ni | 29Cu | 30Zn | 47 <b>A</b> g | 48Cd | 50Sn | 51Sb | 56Ba | 82Pb  |
| L.L.D. (300 sec)                           | 1.2              | 1.3         | 1.2              | 0.4              | 0.3  | 0.3  | 0.7           | 0.9  | 1.9  | 2.8  | 9.9  | 0.3   |
| L.L.D. (100 sec)                           | 2.2              | 2.2         | 2.1              | 0.7              | 0.6  | 0.5  | 1.3           | 1.5  | 3.2  | 4.9  | 17.2 | 0.5   |

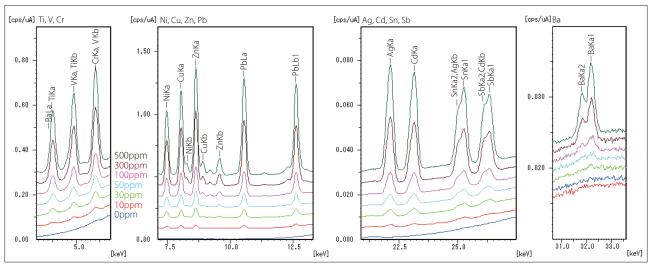



Fig. 2 X-Ray Fluorescence Spectra of Measured Elements

#### Calibration Curves

47 Ag

Measured Intensity (cps/μA)

The calibration curves for Cr, Ni, Ag, Cd, Sb and Pb are shown in Fig. 3, and the accuracy  $(1 \sigma)$  of the respective calibration curves are shown in Table 2. To obtain linearity of the calibration curves, internal standard scattered radiation correction was conducted for Ti, V, Cr, Ni, Cu, Zn and Pb.

48Cd

Measured Ir

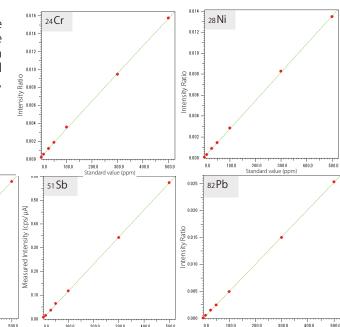



Fig. 3 Calibration Curves for Cr, Ni, Ag, Cd, Sb, Pb

| Table 2 | Accuracy  | of Cali | hration | Curvos |
|---------|-----------|---------|---------|--------|
| lable z | ACCUITACY | OI Call | prauon  | Curves |

|                      |                  |                 |                  |                  | •             |      |               |      |      |      |      | [hbiii] |
|----------------------|------------------|-----------------|------------------|------------------|---------------|------|---------------|------|------|------|------|---------|
| Element              | <sub>22</sub> Ti | <sub>23</sub> V | <sub>24</sub> Cr | <sub>28</sub> Ni | 29 <b>C</b> u | 30Zn | 47 <b>A</b> g | 48Cd | 50Sn | 51Sb | 56Ba | 82Pb    |
| Accuracy $(1\sigma)$ | 1.5              | 1.0             | 3.3              | 2.2              | 1.7           | 1.6  | 1.3           | 1.4  | 1.3  | 2.1  | 3.9  | 1.6     |

#### Repeatability

Using the above calibration curve method, the repeatability test results for A23 - 300 shown Table 3 were obtained by simply conducting 10 repeat measurements. An integration time of 100 seconds was used for each element.

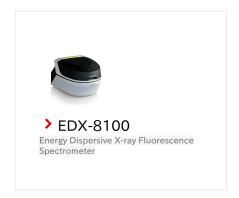
| Table 3 Repeatability for A23 – 3 |
|-----------------------------------|
|-----------------------------------|

| Table 3 Repeatability for A23 – 300 |              |             |      |               |               |      |               |      |      |      |      | [ppm] |
|-------------------------------------|--------------|-------------|------|---------------|---------------|------|---------------|------|------|------|------|-------|
| Element                             | 22 <b>Ti</b> | 23 <b>V</b> | 24Cr | 28 <b>N</b> i | 29 <b>C</b> u | зоZn | 47 <b>A</b> g | 48Cd | 50Sn | 51Sb | 56Ba | 82Pb  |
| Concentration                       | 300          | 300         | 300  | 300           | 300           | 300  | 300           | 300  | 300  | 300  | 300  | 300   |
| 1                                   | 300          | 298         | 295  | 305           | 300           | 299  | 301           | 304  | 303  | 304  | 312  | 295   |
| 2                                   | 297          | 295         | 297  | 300           | 299           | 295  | 302           | 304  | 296  | 299  | 303  | 298   |
| 3                                   | 303          | 298         | 301  | 300           | 298           | 302  | 303           | 302  | 306  | 298  | 301  | 298   |
| 4                                   | 299          | 294         | 297  | 306           | 298           | 303  | 302           | 303  | 304  | 299  | 310  | 299   |
| 5                                   | 302          | 299         | 297  | 303           | 302           | 298  | 306           | 303  | 300  | 301  | 303  | 300   |
| 6                                   | 305          | 299         | 296  | 302           | 303           | 299  | 302           | 303  | 306  | 297  | 316  | 295   |
| 7                                   | 300          | 298         | 295  | 306           | 305           | 298  | 304           | 304  | 301  | 297  | 321  | 299   |
| 8                                   | 306          | 298         | 297  | 302           | 302           | 299  | 300           | 301  | 301  | 302  | 298  | 299   |
| 9                                   | 299          | 298         | 300  | 303           | 297           | 304  | 304           | 305  | 306  | 298  | 295  | 297   |
| 10                                  | 306          | 299         | 298  | 301           | 301           | 300  | 305           | 300  | 303  | 299  | 320  | 299   |
| Average                             | 302          | 298         | 297  | 303           | 300           | 300  | 303           | 303  | 303  | 299  | 308  | 298   |
| Standard Deviation                  | 3.0          | 1.7         | 2.0  | 2.2           | 2.4           | 2.4  | 2.0           | 1.6  | 3.3  | 2.3  | 9.3  | 1.6   |
| Coefficient of Variation [%]        | 1.0          | 0.6         | 0.7  | 0.7           | 8.0           | 0.8  | 0.7           | 0.5  | 1.1  | 0.8  | 3.0  | 0.6   |

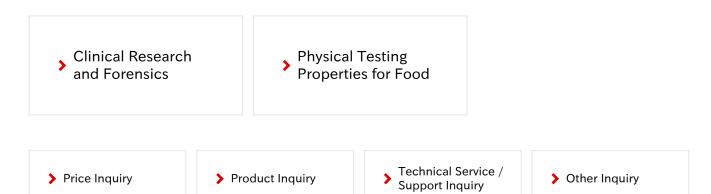
#### **Analytical Conditions**

Instrument Elements

EDX-7000 Ti, V, Cr, Ni, Cu, Zn, Ag, Cd, Sn, Sb, Ba, Pb Working Curve


Analytical Group X-ray Tube Tube Voltage [kV] :Rh target :15, 50 Current [µA]

Collimator[mmф] Primary Filter Atmosphere :10 :#1, #2, #4 : Air : SDD Detector Integration Time[sec]: 100, 300 Dead time [%]


First Edition: Nov. 2013



## **Related Products** Some products may be updated to newer models.



### **Related Solutions**

