

Application News

GC-MS GCMS-QP 2020 NX

Sample Preparation Methods for Moldy Odor-Causing Substances in Water

N. Iwasa

User Benefits

- Multiple analytical techniques are available for moldy odor-causing substances in water, offering a variety of alternatives suited
 to the user's circumstances.
- ◆ Satisfactory measurement results can be obtained with all sample preparation methods.

■ Introduction

In recent years, consumers have shown heightened interest in the safety and security of foods. Off-flavor (moldy odor) has also become a problem in drinking water in some cases, and various analytical techniques for confirming the safety of water are available. The substances that cause moldy odor are 2-methylisoborneol (2-MIB) and geosmin, which are produced by blue-green algae or streptomyces bacteria. Because the human odor detection threshold for these compounds is a very low concentration on the level of several ng/L, sample preparation and high sensitivity measurement are required in analysis.

The sample preparation methods used with moldy odorcausing substances are purge and trap gas chromatography mass spectrometry (PT-GC/MS), head space trap GC/MS (HS Trap-GC/MS), solid phase micro-extraction GC/MS (SPME-GC/MS), and solid phase extraction GC/MS (SPE-GC/MS). This article introduces the features of these sample preparation methods.

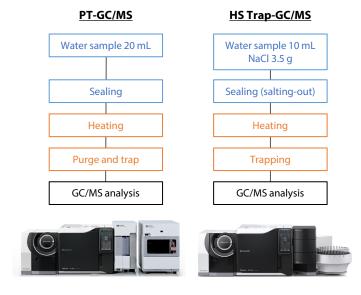
■ Sample Preparation Methods for Moldy Odor Compounds in Water

The features of the four sample preparation methods for moldy odor-causing compounds are outlined below. Fig. 1 shows flowcharts of the respective methods, where manual preparation processes are shown in blue, and the processes executed under automatic control by an autosampler are shown in orange.

O PT-GC/MS

This is a dynamic headspace method, in which purge gas is passed through the water sample, and the volatile analytes are forcibly expelled with the purge gas and trapped by an appropriate adsorbent. Sample preparation is comparatively easy, as the autosampler has an automatic internal standard addition function, and high sensitivity measurement is possible.

○ HS Trap-GC/MS


This method uses the static headspace method, in which the water sample is preheated to a certain temperature in the autosampler, and a set amount of the gas phase, which is in a gas-liquid equilibrium state, is introduced into the GC-MS. It is necessary to be measured in the trap mode for low-sensitivity moldy odors.

○ SPME-GC/MS

This is a type of thermal desorption method, as the water sample is preheated to a certain temperature and exposed to the SPME sampling needle (fiber coating) in the gas phase, and the target analytes are extracted and concentrated and then injected into the GC-MS. The entire process from solid phase micro-extraction through injection into the GC-MS can be controlled automatically by using the Shimadzu AOC™-6000 Plus multifunctional autosampler.

O SPE-GC/MS

In the solid phase extraction method, the sample solution for injection into the GC-MS is prepared by adsorbing the target analytes in the water sample in a solid phase column, eluting the adsorbed analytes with dichloromethane and the concentrating the analytes. High sensitivity measurement is possible by concentrating the target analytes from a large volume of water sample in the sample preparation process.

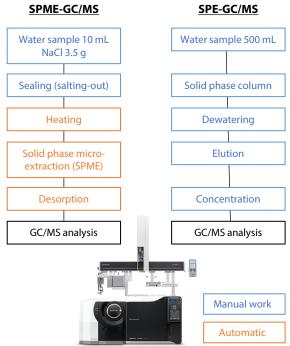


Fig. 1 Flowcharts of Sample Preparation Methods

As shown in Fig. 1, when using the SPE-GC/MS method, all of the sample preparation work must be done manually. With the other three sample preparation methods, after the analyst prepares the sample vial, all of the following processes can be carried out automatically by using an autosampler.

■ Measurement Conditions

Table 1 shows the instrument composition and analysis conditions which are common to the four sample preparation methods. Table 2 to Table 5 show the instrument compositions and analysis conditions used in each method.

Table 1 Common Instrument Composition and Analysis Conditions

Table 1 Common instrument composition and /marysis conditions					
Common instrument composition and analysis conditions					
Model	: GCMS-QP2020 NX				
MS analysis conditions					
Ion source Temp.	: 200 °C				
Interface Temp.	: 250 °C				
Ionization method	: EI				
Measurement mode	: SIM				
SIM lons m/z	: 2-MIB (Target: 95, Ident: 108)				
2,4,6-Trichloroanisole-d3 (IS)					
(Target: 213, Ident: 215)					
Geosmin (Target: 112, Ident: 125)					
Event Time	: 0.3 sec				

Table 2 Instrument Compositions and Analysis Conditions (PT-GC/MS)

Table 2 Instrument Compositions and Analysis Conditions (P1-GC/MS)				
Instrument compositions				
Auto Sampler	: PT7000			
Column	: InertCap $^{\circ}$ 5MS/SiI (30 m \times 0.25 mm I.D., d.f. =			
Column	0.50 μm) (GL Sciences Inc.)			
Analysis conditions				
PT				
Trap Tube	: AQUA TRAP-1			
Sample Volume	: 20 mL			
Sample Heater	: ON (60 °C)			
Purge flow rate	: 60 mL/min			
Purge Time	: 12 min			
Dry purge Time	: 1 min			
Desorb Temp.	: 220 °C			
Desorb Time	: 3 min			
Bake Temp.	: 230 °C			
Bake Time	: 5 min			
GC				
Injection Temperature	: 150 °C			
Injection Mode	: Split (Split ratio 5)			
Carrier Gas	: He			
Carrier Gas Control	: Constant pressure (120 kPa)			
Purge flow rate	: 2.5 mL/min			
Column Temp. : 60 °C (1min) – 4 °C/min – 120 °C – 10 °C/min 170 °C – 20 °C/min – 220 °C (5min)				
	170 C - 20 C/111111 - 220 C (3111111)			

Table 3 Instrument Compositions and Analysis Conditions (HS Trap-GC/MS)

Instrument compositions					
Auto Sampler	: HS-20 NX				
Column	: SH-5 MS (30 m \times 0.25 mm l.D., d.f.= 0.25 μ m)				
Analysis conditions					
HS-20 NX Trap mode					
Vial Volume	: 20 mL				
Sample Volume	: 10 mL (NaCl 3.5 g)				
Oven Temperature	:80°C				
Sample Line Temp.	:150°C				
Transfer Line Temp.	:150°C				
Vial Shaking Level	:5				
Multi injection	:5				
Vial Equivalating Time	: 30 min				
Vial Pressurization Time	: 0.5 min				
Vial Press. Equilib. Time	: 0.1 min				
Loading Time	: 0.5 min				
Load Equilib. Time	: 0.1 min				
Vial Pressure	: 80 kPa				
Dry purge Pressure	: 20 kPa				
Dry purge Time	: 1 min				
Trap Cooling Temp.	: 25 °C				
Trap Heating Temp.	: 220 °C				
Trap Standby Temp.	: 25 °C				
Injection Time	: 5 min				
Needle Flush Time	: 5 min				
GC					
Injection Mode	: Split (Split ratio 3)				
Carrier Gas	: He				
Carrier Gas Control	: Constant linear velocity (57.7 cm/s)				
Column Temp.	: 60 °C (3 min) – 25 °C/min – 150 °C – 5 °C/min –				

 $160 \,^{\circ}\text{C} - 25 \,^{\circ}\text{C/min} - 250 \,^{\circ}\text{C} (5 \, \text{min})$

Table 4 Instrument Compositions and Analysis Conditions (SPME-GC/MS)

Instrument compositions	5
Auto Sampler	: AOC-6000 Plus
Column	: SH-5 MS (30 m \times 0.25 mm I.D., d.f.= 0.25 μ m)
Analysis conditions	
SPME	
Fiber	: 50/30 µm DVB/Carboxen/PDMS StableFlex
	Gas phase extraction
Sample	: 10 mL (NaCl 3.5 g)
Conditioning Temp.	: 270 °C
Pre Conditioning Time	: 0 min
Incubation Temp.	:80 ℃
Incubation Time	: 5 min
Agitator Speed	: 250 rpm
Sample Extract Time	: 30 min
Sample Desorb Time	: 2 min
GC	
Injection Temperature	: 250 °C
Injection Mode	: Splitless (Sampling time 2 min)
Carrier Gas	: He
Carrier Gas Control	: Constant linear velocity (52.9 cm/s)
Purge flow rate	:7 mL/min
Column Temp.	: 40 °C (2 min) – 10 °C/min – 120 °C – 30 °C/min –
	250 °C (5 min)

Table 5 Instrument Compositions and Analysis Conditions (SPE-GC/MS)

Instrument compositions				
Auto Injector	: AOC-20i Plus			
Auto Sampler	: AOC-20s Plus			
Column	: SH-I-5SiI MS (30 m \times 0.25 mm I.D., d.f.= 0.25 μ m)			
Analysis conditions				
GC				
Injection Temperature	: 250 °C			
Injection Mode	: Splitless (Sampling time 2 min)			
Carrier Gas	: He			
Carrier Gas Control	: Constant linear velocity (52.9 cm/s)			
Column Temp.	: 40 °C (2 min) – 10 °C/min – 120 °C – 30 °C/min – 250 °C (5 min)			
Injection Volume	:1 μL			

Measurement Results for Sample Preparation Methods

The measurement results (2-MIB and geosmin) obtained by using the four sample preparation methods in an analysis of moldy odor-causing substances in water were compared.

Fig. 2 shows the SIM chromatogram for the quantitation limit concentration (1 ng/L) and calibration curve. Satisfactory sensitivity was obtained with all sample preparation methods, and the correlation coefficient of the calibration curves was R = 0.999 or higher, indicating good linearity.

Table 6 shows the analysis results for a repeated analysis (n = 5) for the quantitation limit concentration (1 ng/L). Good results were obtained, as the recovery rate for the samples with addition of 1 ng/L was within ± 20 % with all sample preparation methods, and the precision of repeated analyses (repeatability; RSD%) was within 5 %. Table 7 shows the S/N ratio. Measurement with high sensitivity was possible in the order of PT-GC/MS (highest sensitivity), followed by SPE-GC/MS, SPME-GC/MS, and HS Trap-GC/MS.

Note: In Fig. 2, Table 6, and Table 7, the order of sensitivity is arranged from the left (highest), divided into the cases where an autosampler was used in sample preparation (PT-GC/MS, SPME-GC/MS, and HS Trap-GC/MS) and where an autosampler was not used (SPE-GC/MS).

Table 6 Results of Repeated Analysis (n = 5) for Quantitation Limit Concentration (1 ng/L)

Compound	Item	PT- GC/MS	SPME- GC/MS	HS Trap- GC/MS	SPE- GC/MS	
2-MIB	Average concentration (ng/L)	0.939	1.065	1.011	1.018	
	RSD%	5 % or less				
Geosmin	Average concentration (ng/L)	1.008	1.077	0.963	1.119	
	RSD%	5 % or less				

Table 7 S/N Ratios *1 of Sample Preparation Methods

Compound	PT- GC/MS	SPME- GC/MS	HS Trap- GC/MS	SPE- GC/MS
2-MIB	55	24	11	45
Geosmin	133	31	17	75

^{*1} The S/N ratio was calculated by the peak to peak noise calculation method.

■ Conclusion

Good results were obtained with all sample preparation methods for analysis of moldy odor-causing substances in water. Table 8 shows a comparative table in which the sample preparation methods were evaluated in 3 levels (A, B, C). Since sensitivity, handling operation, and other features differed depending on the sample preparation method, the optimum sample preparation method should be selected based on an understanding of their respective characteristics.

Table 8 Comparison of Sample Preparation Methods for Moldy Odor Compounds in Water

	<u> </u>			
ltem	PT- GC/MS	SPME- GC/MS	HS Trap- GC/MS	SPE- GC/MS
Sensitivity	Α	В	С	Α
Quantitativity	Α	Α	Α	Α
Sample preparation	A Automatic internal standard addition function + No quantitative sampling	B Salting-out + Quantitative sampling of 10 mL sample	B Salting-out + Quantitative sampling of 10 mL sample	C Concentration using solid phase column
Maintainability	В	Α	В	Α

S	ample preparation method	PT-GC/MS	SPME-GC/MS	HS Trap-GC/MS	SPE-GC/MS
SIM chromatogram at quantitation limit concentration	2-MIB	(x1,000) 4.0 95.00 3.5 3.0 2.5 2.0 1.5 10.5 15.50 15.75 16.00	(x10,000) 3.0 95.00 2.5 108.00 2.0 1.5 1.0 0.5 9.25 9.50 9.75	(x1,000) 3.5 95.00 108.00 2.5 2.0 1.0 0.5 6.00 6.25 6.50	(x1,000) 6.0 95.00 5.0 108.00 4.0 3.0 1.0 10.25 10.50
titation limit concentration	Geosmin	(x1,000) 7.0 112.00 6.0 125.00 3.0 2.0 1.0 21.25 21.50 21.75	(x10,000) 6.0 112.00 125.00 10 11.6 11.7 11.8 11.9 12.0	(x1,000) 2.5 112.00 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	(x10,000) 1.00 112,00 125,00 0.50 0.25 12,00 1225 12,50
	Concentrations used in preparing calibration curves	1, 2, 5, 10 ng/L	1, 2, 5, 10, 20, 50 ng/L	1, 5, 10, 50, 100 ng/L	1, 2, 5, 10 ng/L
Calibration curve	2-MIB	Area ratio R=0.9999 0.75 0.50 0.25 0.00 0.25 5.0 7.5 Concentration	Area ratio 30 R=0.9995 20 15 10 5 0 0.0 25.0 Concentration	Area ratio 10.0 R=0.9999 7.5 5.0 2.5 0.0 0.0 25.0 50.0 75.0 Concentration	Arearatio 1.25 R=0.9997 1.00 0.75 0.50 0.25 0.00 0.00 2.5 5.0 7.5 Concentration
	Geosmin	Arearatio 1.00 R=0.9999 0.75 0.50 0.25 0.00 0.0 2.5 5.0 7.5 Concentration	Area ratio 40 R=0.9997 30 00.0 25.0 Concentration	Area ratio 12.5 R=0.9996 10.0 7.5 5.0 0.0 2.5 0.0 Concentration	Area ratio 1.50 R=0.9994 1.25 1.00 0.75 0.50 0.25 0.00 0.0 2.5 5.0 7.5 Concentration

Fig. 2 SIM Chromatograms at Quantitation Limit Concentration (1 ng/L) and Calibration Curves for Sample Preparation Methods

AOC is a trademark of Shimadzu Corporation or its affiliated companies in Japan and/or other countries. InertCap is a trademark of GL Sciences Inc.

Shimadzu Corporation

Analytical & Measuring Instruments Division Global Application Development Center

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.
This publication may contain references to products that are not available in your country. Please contact us to check the availability of these

products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See http://www.shimadzu.com/about/trademarks/index.html for details.

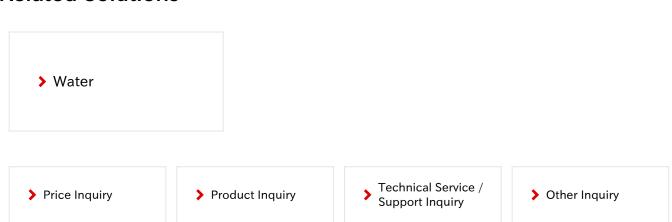
Third party trade marks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they refer to either the entities or their products of the product of the products of the

are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change . without notice.

First Edition: Mar. 2022


01-00346-EN

> Please fill out the survey

Related Products Some products may be updated to newer models.

Related Solutions

