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Morphological Analysis and Visualization of 
Morphological Changes in Cell Spheroids Using 
Deep Learning
Shuhei Yamamoto, Mika Okada, Toru Kaji, and Toru Ezure

Web Application Supporting Cellular Observations Cell Pocket™

 Cell Pocket provides a simple means of quantifying sensuous observations.
 Quantified observation information can be used for objective evaluation of culture conditions.
 Objective assessment results can be shared with lab members along with data.

 Introduction
Human pluripotent stem cells are a heterogeneous population
that change constantly during the culture process. The
changing morphology of human pluripotent stem cells is
considered an important quality characteristic, and evaluating
product quality at the completion of manufacture, as is the case
with small molecule drugs, is not a suitable approach for cell
preparations. Given this backdrop, the industrialization of
regenerative medicine and cell therapy requires methods of
evaluating the status of cells that are noninvasive and provide
observations over time.
A well-known noninvasive technique is the assessment of cell
morphology by image analysis. Analyzing cell morphology once
posed a significant challenge, but thanks to dramatic
improvements in machine learning techniques and the
increased availability of these techniques, cell morphological
analysis is now feasible and attracting interest.
Shimadzu used segmentation by deep learning, a machine
learning technique, to develop Cell Pocket, a web application
that offers a simple platform for image analysis (Fig. 1). Cell
Pocket is a user-friendly advanced image analysis tool that
allows users to quantify their sensuous or experimental
observations and derive important findings based on these
observations. This article presents an example analysis that
visualizes changes in spheroid morphology during the
differentiation and maturation process of spheroids of
endoderm cells derived from human iPSCs.

Fig. 1 Operation of Cell Pocket Web Application

• Aggregate and accumulate laboratory data

• Analyze, view, and manage data even from the office

Image Size: 1920 × 1440 pixels

Bit Depth: 24-bit (RGB)

File Format: Portable Network Graphics (PNG)

No. of Analyzed Images: 14 images (2 of the undifferentiated state and 2
at each differentiation stage)

Fig. 3 Microscopic Image of Spheroids Used in Analysis

Analytical Conditions
Cell Spheroids for Analysis

Some example images of the cell spheroid culture used in the
analysis are shown in Fig. 2. The shape, pattern, color, and other
morphological characteristics of the cell spheroids differ at each
of the six differentiation stages.

The images used for analysis contained around 100 to 300
spheroids as shown in Fig. 3. Information about these images is
shown in Table 1.

Table 1 Image Information

Fig. 2 Cell Spheroid Morphology at Each Differentiation Stage

(a) Undifferentiated (b) Differentiation 
stage 1

(c) Differentiation 
stage 2

(d) Differentiation 
stage 3

(e) Differentiation 
stage 4

(f) Differentiation 
stage 5

(g) Differentiation 
stage 6
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対象と正しく推定された領域

対象だったが非対象と推定された領域
非対象だったが対象と推定された領域
非対象と正しく推定された領域

Image Size: 197 × 165 pixels
Bit Depth: 24-bit (RGB)
File Format: Portable Network Graphics (PNG)
No. of Images: 95 images (training: 60, validation: 22, test: 13)

Fig. 6 Examples from Dataset

Learning Algorithm

Cell Pocket uses a deep-learning algorithm called semantic
segmentation that attaches pre-learned labels to each pixel in
an image.
For this analysis, the labels (1) spheroid, (2) spheroid perimeter,
and (3) background were assigned to training images, as shown
in Fig. 4, to create a trained model that recognized regions of an
image as either label (1), (2), or (3). Images used to train in a
trained model and identify regions are called target images, and
images with labels are called labeled images. The labeled image
data used in training is created by hand.
Once trained, the model is able to predict the regions of the
image that represent spheroids, as shown in Fig. 5.

Dataset

A dataset is the combination of target images and labeled
images used to train a model and to evaluate the accuracy and
performance of a trained model. A dataset contains three types
of data: training data consisting of images used in training,
validation data consisting of images used in training to evaluate
model accuracy, and test data consisting of images used to
evaluate the final performance of a trained model. Details of the
dataset used in this example analysis are shown in Table 2. This
dataset comprised the images for analysis shown in Table 1 and
excerpted parts of images of cell spheroids cultured under
similar culture conditions. Some examples from the dataset are
shown in Fig. 6.

Table 2 Details of Dataset

Fig. 4 Target Image and Labeled Image

(a) Target image (b) Labeled image

(1) Spheroid (gray)

(2) Spheroid perimeter (white)

(3) Background (black)

(a) Microscope image (b) Prediction (spheroids)

Fig. 5 Prediction by the Trained Model

Performance 
Metric

Overall Mean Background Spheroid Spheroid 
Perimeter

Accuracy: 0.954 - - -

IoU: 0.798 0.873 0.930 0.590

Precision: 0.874 0.922 0.959 0.742

Recall: 0.895 0.950 0.982 0.753

Trained Model Performance

The learning curve for the model is shown in Fig. 7. The
horizontal axis of the learning curve shows the number of
training iterations, and the vertical axis shows the error rate for
training data and validation data and the loss function value.
The red line is the loss function value, the blue line is the error
rate for training data, and the green line is the error rate
validation data. The loss function is set to cross-entropy and the
goal of training is to minimize the cross-entropy loss. As the
number of training iterations increases, the loss function
decreases and converges, while a similar tendency is seen in
training data and validation data error rates, indicating the
model is being trained successfully.

Fig. 7 Learning Curve

Table 3 shows the results of a performance assessment of the
trained model using 13 test data images. The performance
metrics in Table 3 are explained in more detail in Fig. 8.
An intersection over union (IoU) value of over 0.9 for spheroids
indicates the model is accurate enough at identifying regions
that represent spheroids. Fig. 9 shows spheroids identified by
the trained model in an image from the test data set. In Fig. 9,
regions identified as spheroids are shown as a blue overlay, and
a blue perimeter is added when there is no contact with the
edge of the image.
The model correctly identified the inner region (not including
the perimeter) of the spheroids and removing the added
spheroid perimeter shows the model identified touching
spheroids as separate spheroids.

Table 3 Results from Performance Assessment of Trained Model

Correctly predicted object region

Object outside of predicted object region

Predicted object region that contains no object

Correctly predicted region containing no object

Fig. 9 Explanation of Performance Metrics

Fig. 9 Spheroids Predicted by Trained Model in Test Data

(a) Test data (b) Spheroids identified by the trained model

(a) Training data

(c) Test data

(b) Validation data(a) Train data

(c) Test data

(b) Validation data

(a) Test data
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Conclusion
Cell Pocket was used to perform a morphological analysis on
human iPSC spheroids undergoing pancreatic differentiation.
Training data was created from parts of images and a trained
model was created that could identify spheroids. The
morphological information of each spheroid was extracted by
performing particle analysis on the spheroid area estimated by
the trained model. Heat maps showing the distribution of these
morphological metrics at each stage of differentiation were
used to visualize how these metrics change during culture.
Applying dimensional compression by t-SNE to these
morphological information also revealed clusters corresponding
to each stage of differentiation. These findings from
morphological analysis offer an effective and noninvasive
means of evaluating the status of cell cultures.
Lastly, we would like to thank Professor Shoen Kume and
Associate Professor Nobuaki Shiraki of the Kume & Shiraki
Laboratory, Tokyo Institute of Technology, for providing the
image data analyzed in this article and their valuable comments
on the results.

Fig. 12 Dimensional Compression of Morphological Data by t-SNE

Cell Pocket is a trademark of Shimadzu Corporation and/or its affiliates in Japan and other countries.

Analysis Method
Cell Pocket allows the user to register an analysis method, called
an “analysis recipe,” that combines the trained model with
various analytical processes that include image processing. The
analysis method shown in Fig. 10 was created to visualize the
distribution of spheroid area and circularity.

In addition to area and circularity, particle analysis can be used
to obtain information such as perimeter length; bounding
rectangle major axis length, minor axis length, aspect ratio, and
angle; mean luminance and luminance variation; and tone.
Using the index of “Ambient length, aspect ratio of circumscribed
rectangle, average and variance of brightness, color” which is the
result of particle analysis of each differentiation stage,
dimensional compression was performed by the t-SNE method to
investigate whether there were morphological differences of
spheroids at each differentiation stage.

(2) Spheroids predicted by 
trained model

(3) Particle analysis: 
Calculates area and 
circularity of spheroids

(4) Heat map created from 
morphology data
Vertical axis: Circularity
Horizontal axis: Area (pixels)

(1) Input image

Fig. 10 Analysis Method

Results
Using particle analysis, the distribution of spheroid area and
circularity at each differentiation stage was visualized in heat
maps (Fig. 11). The heat maps show that spheroids of
undifferentiated cells were uniform in area (≈ size) and
circularity, whereas spheroid circularity varied greatly at
differentiation stages 2 and 5. The heat maps also show that
some spheroids with low circularity emerged at differentiation
stages 1 and 4 prior to differentiation stages 2 and 5.
Conversely, the spheroids at differentiation stage 3 are uniform
in area and circularity. This method of visualizing changes in
spheroid morphology can be used to identify unexpected
morphological changes in real-time.
Fig. 12 shows results from a t-SNE-based dimensional
compression of morphological data for individual spheroids.
Each spheroid of each differentiation stage was colored,
confirming that clusters were formed in each undifferentiated
state or differentiation stage.

Fig. 11 Distribution of Cell Spheroid Area and Circularity at Each 
Differentiation Stage

(a) Undifferentiated (b) Differentiation 
stage 1

(c) Differentiation 
stage 2

(e) Differentiation 
stage 4

(f) Differentiation 
stage 5

(g) Differentiation 
stage 6

Undifferentiated
Differentiation stage 1
Differentiation stage 2
Differentiation stage 3
Differentiation stage 4
Differentiation stage 5
Differentiation stage 6

Parameter Set Value
Perplexity: 50
Iterations: 1000
Early exaggeration: 12

(d) Differentiation 
stage 3
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