Application News

Inductively Coupled Plasma Mass Spectrometer ICPMS-2050

Analysis of Drinking Water by U.S. EPA Method 200.8 Using ICPMS-2050 with Collision/Reaction Cell

Kosuke Naka

User Benefits

- ICPMS-2050 can achieve accurate analysis and high stability, as well as lower Ar gas consumption and running costs with a mini-torch.
- Se can be measured with higher sensitivity using reaction mode.
- Avoids a complex investigation of conditions by using the analytical conditions from preset methods.

■ Introduction

Method 200.8¹⁾, developed by the U.S. Environmental Protection Agency (EPA), is an ICP-MS method for the analysis of trace elements in groundwater, surface water, and drinking water. EPA 200.8 is a method based on analysis with no gas mode. On the other hand, ICP-MS is commonly equipped with collision/reaction cell technology to eliminate interferences such as polyatomic ions. In this Application News, drinking water and a certified reference material were analyzed by ICPMS-2050. Most elements were measured in collision mode to eliminate interference, but reaction mode was used to measure Se for higher sensitivity. Spike recovery and long-term stability were evaluated with reference to EPA 200.8 quality control (QC) requirements.

The analytical conditions used in this application can be easily registered from preset methods, enabling measurements to be performed without the need to develop them.

Fig. 1 ICPMS-2050 and AS-20 Equipment

■ Sample Preparation

 Certified Reference Material (CRM) JSAC 0302-4a (The Japan Society for Analytical Chemistry)

JSAC 0302-4a (CRM for river water) was used to evaluate the accuracy of the ICPMS-2050 measurements.

Drinking Water

Drinking water was prepared to contain 1 v/v% \mbox{HNO}_3 and 100 $\mbox{\mu g/L}$ Au.

■ Standard Samples

Calibration Standards

Calibration standards were prepared by mixing standard solutions (Be, Na, Mg, Al, K, Ca, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Hg, Tl, Pb, Th, U) and adding HNO $_3$ and Au standard solution. Au standard solution is added to retain Hg in solution according to EPA 200.8. The concentrations in each calibration curve sample are shown in Table 1.

• Internal Standard Solution

The internal standard solution was prepared by mixing standard solutions (Li, Sc, Ga, Y, Rh, In, Tb, Ho, Lu, Bi) and adding HNO $_3$ and Au standard solution. The concentrations in the internal standard solution are shown in Table 2.

Continuing Calibration Verification (CCV) Samples
 CCV was prepared at the same concentration as STD4.

Table 1 Calibration Standards

Floresiste	Concentration (μg/L)					
Elements	STD1	STD2	STD3	STD4	STD5	
Be, Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, Tl, Pb, Th, U	0	1	10	50	100	
Ag	0	1	10	50		
Hg	0	0.05	0.5	2.5	5	
Na, Mg, K, Ca	0	250	2500	12500	25000	
Au	100					
HNO ₃	1v/v%					

Table 2 Internal Standard Solution

Elements	Concentration (μg/L)		
Li, Sc, Ga	1000		
Y, Rh, In, Tb, Ho, Lu, Bi	100		
Au	100		
HNO ₃	1 v/v%		

■ Equipment Configuration and Analytical Conditions

The configuration of the ICP-MS system is shown in Table 3. To reduce running costs, analysis was performed with a mini-torch that consumes less argon gas than a typical plasma torch. To reduce the labor involved in sample preparation, the internal standard sample was added online using an online internal standard kit.

The analytical conditions used are shown in Table 4. The analytical conditions used in this study can be easily registered from LabSolutions $^{\text{TM}}$ ICPMS preset methods.

Table 3 ICP-MS System Configuration

System:	ICPMS-2050
Nebulizer:	Nebulizer, DC04
Chamber:	Cyclone Chamber
Torch:	Mini-Torch
Skimmer Cone:	Nickel
Autosampler:	AS-20
Internal Standard Elements	Online Internal Standard Kit
	(sample: internal standard = about 9:1)

Table 4 Analytical Conditions

RF Power:	1.20 kW
Plasma Gas Flowrate:	9.0 L/min
Auxiliary Gas Flowrate:	1.10 L/min
Carrier Gas Flowrate:	0.45 L/min
Dilution Gas Flowrate:	0.40 L/min
Collision/Reaction Gas:	He / H ₂

■ Collision/Reaction Cell

EPA 200.8 is a method based on analysis in the no gas mode, which corrects for interference using theoretical equations. However, there are also interferences that cannot be corrected by theoretical formulas in ICP-MS analysis. For example, ⁴⁴Ca¹⁶O+ interferes with ⁶⁰Ni due to Ca in drinking water. This interference of polyatomic ions cannot be corrected by theoretical equations, which can lead to measurements that are larger than the true value.

He collision and $\rm H_2$ reaction are effective means of eliminating the interferences of polyatomic ions. In He collision, interferences are removed by collision of He gas with polyatomic ions. Interference removal of polyatomic ions by collision has the advantage of being versatile, but it also gives rise to collision with the measured elements, which causes the signal degradation of the measured elements. In the $\rm H_2$ reaction, on the other hand, interferences are eliminated by reaction between $\rm H_2$ gas and polyatomic ions. Therefore, the signal degradation of the measured elements can be minimized. However, interference ions that do not react with $\rm H_2$ gas cannot be sufficiently removed.

In this Application News, most elements were measured in He collision and Se was measured in H $_2$ reaction for accurate analysis. Se is generally analyzed at m/z 78. However, ⁷⁸Se is interfered with by ⁴⁰Ar³⁸Ar $^+$, which comes from argon gas that forms the plasma. Both He collision and H $_2$ reaction can eliminate this interference. Table 5 shows a comparison of the Instrument Detection Limit (IDL) of Se in He collision and H $_2$ reaction. In H $_2$ reaction, the signal degradation of Se is smaller, lower IDL of Se can be achieved than in He collision.

Table 5 Comparisons of IDL in He Collision and H₂ Reaction

Elements	Gas Mode	IDL (μg/L)	
⁷⁸ Se	He collision	0.2	
⁷⁸ Se	H ₂ reaction	0.02	

■ Detection Limits

Calibration curves were prepared using the calibration standards shown in Table 1. IDLs and Method Detection Limits (MDLs) determined from calibration curves are shown in Table 6. Following EPA 200.8, IDLs were calculated from 3 times the standard deviation (σ) of 10 measurements of the calibration blank (STD1). MDLs were determined from σ of 7 measurements of blank spiked with concentrations two to five times the estimated detection limit.

IDL = 3 \times σ (STD1) \times slope of the calibration curve MDL = t \times σ (spiked blank) \times slope of the calibration curve where :

 $t = Student's\ t\ value\ for\ a\ 99\ \%\ confidence\ level\ and\ a\ standard\ deviation\ estimate\ with\ n-1\ degrees\ of\ freedom\ [t=3.14\ for\ seven\ replicates]$

 σ = standard deviation of the replicate analyses

Table 6 IDLs and MDLs for Each Element

Elements	Gas Mode	Internal Standard Element	IDL (μg/L)	MDL (μg/L)	
⁹ Be	No Gas	⁴⁵ Sc	0.008	0.03	
²³ Na	He	⁴⁵ Sc	20	10	
²⁴ Mg	He	⁴⁵ Sc	0.8	2	
²⁷ Al	No Gas	⁴⁵ Sc	0.01	0.02	
³⁹ K	He	⁴⁵ Sc	7	10	
⁴⁴ Ca	He	⁴⁵ Sc	9	30	
⁵¹ V	He	⁷¹ Ga	0.02	0.02	
⁵² Cr	He	⁷¹ Ga	0.009	0.02	
55Mn	He	⁷¹ Ga	0.009	0.03	
⁵⁹ Co	He	⁷¹ Ga	0.004	0.007	
⁶⁰ Ni	He	⁷¹ Ga	0.03	0.03	
⁶³ Cu	He	⁷¹ Ga	0.005	0.006	
⁶⁶ Zn	He	⁷¹ Ga	0.02	0.06	
⁷⁵ As	He	⁷¹ Ga	0.03	0.04	
⁷⁸ Se	H ₂	⁷¹ Ga	0.02	0.05	
⁹⁸ Mo	He	¹⁰³ Rh	0.004	0.004	
¹⁰⁷ Ag	He	¹⁰³ Rh	0.001	0.007	
¹¹¹ Cd	He	¹¹⁵ ln	0.01	0.01	
¹²¹ Sb	He	¹¹⁵ ln	0.006	0.009	
¹³⁷ Ba	He	¹¹⁵ ln	0.02	0.04	
²⁰² Hg	He	²⁰⁹ Bi	0.006	0.005	
²⁰⁵ TI	He	²⁰⁹ Bi	0.001	0.003	
²⁰⁸ Pb	He	²⁰⁹ Bi	0.002	0.003	
²³² Th	He	²⁰⁹ Bi	0.0007	0.001	
²³⁸ U	He	²⁰⁹ Bi	0.0003	0.0009	

■ Analysis of CRM JSAC 0302-4a

CRM JSAC 0302-4a was quantitatively analyzed using the calibration curves. The results of CRM analysis are shown in Table 7. Recoveries of 98 to 107 % of the certified value were achieved. These results certify the EPA 200.8 QC requirement of 90 to 110 % CRM recoveries. The accuracy of ICPMS-2050 measurement is confirmed.

Table 7 Result of CRM JSAC 0302-4a Analysis (N = 3)

Elements	Certified Value (µg/L)	Mean Measured Value (μg/L)	Recovery (%)
⁹ Be	0.99	0.98	99
²³ Na	3900	4030	103
²⁴ Mg	3100	3100	100
²⁷ Al	79	80.1	101
³⁹ K	470	466	99
⁴⁴ Ca	12700	12500	98
⁵² Cr	9.96	9.90	99
⁵⁵ Mn	5.7	5.65	99
⁶⁰ Ni	16.8	18.0	107
⁶³ Cu	10.2	10.9	107
⁶⁶ Zn	10.3	10.8	105
⁷⁵ As	5.2	5.32	102
⁷⁸ Se	5.0	5.21	104
⁹⁸ Mo	0.38	0.382	101
¹¹¹ Cd	0.98	1.00	102
¹³⁷ Ba	0.89	0.90	101
²⁰⁸ Pb	9.7	10.2	105

■ Analysis of Drinking Water and Spike Recovery

Unspiked and spiked drinking water were quantitatively measured using calibration curves, and spike recoveries were calculated. The results are shown in Table 8. Spike recoveries of 94 to 107 % were obtained for all the measured elements. The results meet EPA 200.8 QC requirement of 70 to 130 % recoveries. The matrix of the drinking water had no effect on the ICPMS-2050 analysis.

■ Long-Term Stability

Drinking water was analyzed for about seven hours to evaluate the long-term stability of the ICPMS-2050. CCV was measured every 10 samples to confirm the validity of the calibration curves.

Recoveries of CCV during the analysis are shown in Fig. 2. The CCV recoveries of all the measured elements during the analysis were within the EPA 200.8 QC requirement of 90 to 110 % (red dotted line). If the CCV recoveries fall outside 90 to 110 %, recalibration is required.

The internal standard recoveries during analysis are shown in Fig. 3. All measured internal standard recoveries were within the EPA 200.8 QC requirement of 60 to 125 % (red dotted line). If the internal standard recoveries also fall outside this range, recalibration is needed.

The results of CCV and internal standard recoveries showed good long-term stability of ICPMS-2050 analysis.

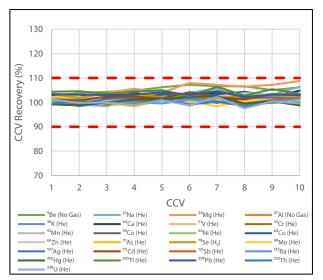


Fig. 2 CCV Recoveries over 7 Hours Analysis

Table 8 Spike Recoveries of Drinking Water

El .	Unspiked Drinking Water	STD3 Spiked Drinking Water			STD4 Spiked Drinking Water			
Elements	Measured Value (μg/L)	Spike Conc. (μg/L)	Measured Value (μg/L)	Recovery (%)	Spike Conc. (μg/L)	Measured Value (μg/L)	Recovery (%)	
⁹ Be	N.D.	10	10.3	103	50	50.0	100	
²³ Na	6530	2500	8990	98	12500	19200	101	
²⁴ Mg	9200	2500	11600	(96)	12500	22100	103	
²⁷ Al	8.95	10	18.8	99	50	57.5	97	
³⁹ K	887	2500	3300	97	12500	12800	95	
⁴⁴ Ca	21200	2500	23700	(100)	12500	32900	94	
⁵¹ V	15.8	10	25.9	101	50	64.8	98	
⁵² Cr	0.591	10	10.8	102	50	50.6	100	
55Mn	0.866	10	10.8	99	50	50.1	98	
⁵⁹ Co	N.D.	10	10.6	106	50	51.8	104	
⁶⁰ Ni	0.20	10	10.6	104	50	51.5	103	
⁶³ Cu	0.256	10	10.9	106	50	53.1	106	
⁶⁶ Zn	0.33	10	10.9	106	50	52.4	104	
⁷⁵ As	0.18	10	10.4	102	50	51.2	102	
⁷⁸ Se	0.13	10	10.5	104	50	50.3	100	
⁹⁸ Mo	0.135	10	9.7	96	50	50.1	100	
¹⁰⁷ Ag	0.017	10	10.3	103	50	50.5	101	
¹¹¹ Cd	N.D.	10	10.5	105	50	51.8	104	
¹²¹ Sb	0.012	10	10.6	106	50	52.0	104	
¹³⁷ Ba	0.88	10	11.3	104	50	52.4	103	
²⁰² Hg	N.D.	0.5	0.536	107	2.5	2.65	106	
²⁰⁵ TI	N.D.	10	10.5	105	50	50.6	101	
²⁰⁸ Pb	0.009	10	10.6	106	50	52.1	104	
²³² Th	0.0064	10	10.1	101	50	51.0	102	
²³⁸ U	0.0458	10	10.4	104	50	52.0	104	

N.D. = Not Detected (< MDL)

Recovery (%) = (Spiked Sample – Unspiked Sample) / Spike conc. \times 100

(): According to EPA 200.8, spike recovery calculations are not required if spike concentration is less than 30 % of unspiked sample concentration.

Fig. 3 Internal Standard Recoveries over 7 Hours Analysis

■ Conclusion

In this Application News, drinking water was analyzed using ICPMS-2050. Good recoveries of CRM and spiked samples were obtained, confirming the accuracy of ICPMS-2050 analysis. The $\,$ CCV recoveries of all the measured elements were within 90 to 110 %. Also, all measured internal standard recoveries were within the EPA 200.8 QC requirement of 60 to 125 %, demonstrating the high stability of the ICPMS-2050.

ICPMS-2050 can achieve accurate analysis and high stability, as well as lower argon gas consumption and lower running costs, thanks to the use of a mini-torch. In addition, the analytical conditions can be easily registered from preset methods, and analysis can be started without the need to develop the analytical method.

<References>

EPA Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma - Mass Spectrometry Revision 5.4

<Related Applications>

Analysis of Drinking Water by U.S. EPA Method 200.8 Using ICPMS-2040 with Collision Cell, Application News 01-00572_EN

LabSolutions is trademarks of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only, Not for use in diagnostic procedures.

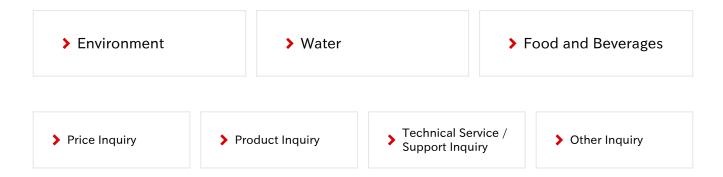
01-00573-EN First Edition: Jul. 2023

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these

products in your country.
The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu.
See http://www.shimadzu.com/about/trademarks/index.html for details.
Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not

they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own


The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

> Please fill out the survey

Related Products Some products may be updated to newer models.

Related Solutions

