

Application News

Liquid Chromatograph Mass Spectrometer LCMS-8060NX

Determination of Various PFAS in Egg Matrix Using Stacked Injection On-line SPE Coupled to LC-MS/MS

Anja Grüning Shimadzu Europa GmbH

User Benefits

- ◆ Single vendor solution for UHPLC and MS system
- ◆ Quantification of 27 PFAS in ng/mL range using an on-line SPE approach
- Increased sensitivity due to the stacked injection combined with on-line SPE

Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) refer to a class of more than 4000 individual chemicals that have been widely used since the 1950s, e.g. as fire retardants, food packaging materials or non-stick coatings. These compounds offer heat-resistant, and oil- and water-repellant properties as well as chemical and thermal stability, resistance to UV light and weathering. Due to their anthropogenic origin, PFAS cannot be degraded, and hence they accumulate and can now be detected ubiquitously in the environment. Due to this PFAS also found their way into the food chain and accordingly into our food. Concerns about human exposure through diet, studies on the status of food contamination are being conducted in various countries

Here we describe the determination of various PFAS in egg matrix in a relevant concentration range. The analysis is based on a simple QuEChERS extraction coupled to an online SPE approach. This omits additional sample preparation steps like dSPE.

■ Materials and Methods

Fast, sensitive and robust LC-MS/MS systems provide the basis for routine analysis in food testing laboratories. For the described application, a Shimadzu LCMS-8060NX triple-quadrupole mass spectrometer coupled with a NexeraTM X3 UHPLC system was used (Figure 3).

27 PFAS standards and one IS-mixture (ISO 21675-LSS) were purchased (Wellington Laboratories / neochema). Stock solutions of these PFAS were diluted with methanol and combined to a single standard mixture with a final a concentration of 1ng/μL for each compound. Further dilutions of this mixture were produced to spike either the egg matrix before extraction or in case of calibrators, extracted egg matrix. Calibration samples in egg matrix were determined in the concentration range from 0.001 -0.025 ng/mL to 1 ng/mL. All samples (except blanks) were spiked with IS to a final concentration of 0.04 ng/mL.

Samples were extracted on the basis of QuEChERS AOAC method (Figure 1, RESTEK Q-Sep QuEChERS Extraction Packets AOAC Method). 50µL of sample was injected directly on a SPE-trap column using the stacked injection function offered by the Nexera SIL-40 autosampler. This results in 5x10 µL injections, where each injection is followed by aqueous sample loading phase removing the organic solvent from the sample extraction. This leads to improved trapping capability. With this approach higher volumes of the pure QuEChERS extract can be injected.

Analysis was performed within 15 minutes using MRM acquisition with at least two transitions for each compound (except PFBA, where only one transition is available).

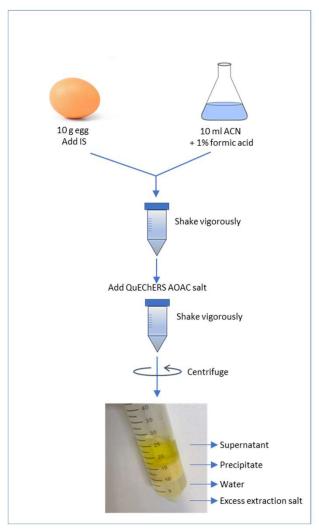
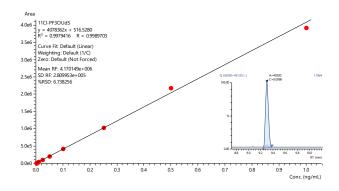


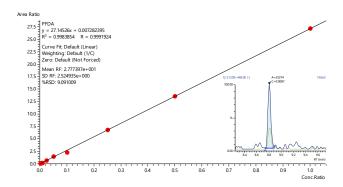
Figure 1 Extraction process

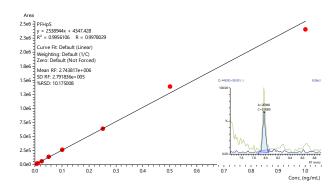
Analytical conditions are listed in Table 1. The optimized MRM transitions are summarized in Table 2.

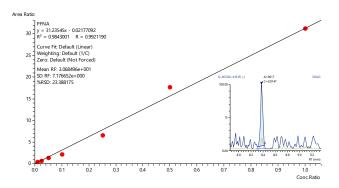
Since PFAS can be present in reagents, glassware, pipettes, tubing, degassers and other parts from the LC-MS/MS instrument, the use of a solvent delay column is necessary. Small C18 columns are placed between mixer and autosampler respectively between mixer and valve to delay possible PFAS contaminations and separate them from sample-derived PFAS.

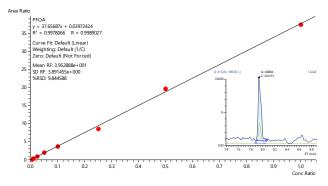
Table 1 Analytical conditions


Mass Spectrometer	: LCMS-8060NX
Ionization	: Electrospray Ionization (ESI), negative
Interface Voltage	: -1 kV
Focus Voltage	: -2.5 kV
Heating Gas	: 15 L/min
DL Temp.	: 150 °C
Interface Temp.	: 300 °C
Nebulizing Gas	: 3 L/min
Drying Gas	: 3 L/min
Heat Block	: 400 °C
Dwell-/Pause-time	: 4 (3 for IS) / 1 msec
CID	: 270 kPa


UHPLC	: Nexera X3
Pump A (Analytical)	: 2 mM ammonium acetate in H ₂ O
Pump B (Analytical)	: 2 mM ammonium acetate in Methanol
Pump C (Trap)	: H ₂ O + modifier (sample loading)
Pump D (Trap)	: Methanol (washing of SPE and delay column)
Analytical column	: Shim-pack Scepter $^{\text{TM}}$ 1.9 μm , C18-120, 2.1 x 50 mm
Delay column	: Shim-pack TM GIST HP 3 μ m, C18-AQ, 3 x 30 mm
Trap column	: EVOLUTE® Express ABN on-line SPE cartridge
Injection Volume	: 5 x 10 μL
Cooler temperature	: 8 °C
Column Oven	: 50 °C
UHPLC	: Nexera X3


■ Results


Matrix matched calibration curves were calculated using weighted (1/conc) linear regression with an R^2 of $\,>$ 0.98 for all PFAS. Exemplary calibration curves and respective MRM-chromatograms at 0.1 ng/mL are shown in Figure 2.


All tested eggs already contained certain PFAS. These PFAS were marked with an asterisk. Lowest calibration point was adapted accordingly. Depending on availability of an appropriate ISTD either internal or external standard method was used for quantification.

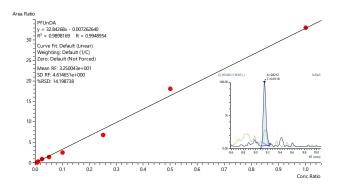


Figure 2 Exemplary calibration curves and a typical chromatogram at 0.01 ng/mL level

Five eggs from different origins were purchased locally and analysed together with the calibration samples. Results are shown in Table 4. In addition, these eggs were spiked with PFAS before extraction at concentrations of 0.01 ng/mL and 0.1 ng/ml.

The percentage relative standard deviation was typically lower than 20% (for 95% of the determined compounds resp. QCs) from these spiked samples (Table 3). Eggs where some PFAS could be detected at a relatively high level were not taken into account for the respective calculations.

Table 2 MRM transitions and calibration information

Acronym	RT	Туре	ISTD used	Quantifier	Qualifier	Calibration range	Unit	R ²	
11CI-PF3OUdS	9.309	Target		630.90>451.05	630.90>82.95	0.001-1	ng_mL	0.9979	
9CI-PF3ONS	8.648	Target	PFOS-IS	530.90>351.10	530.90>82.90	0.001-1	ng_mL	0.9989	
DONA	7.479	Target	PFHpA-IS	377.10>251.00	377.10>84.95	0.001-1	ng_mL	0.9957	
FOSA	9.313	Target	FOSA-IS	497.90>77.90	497.90>478.15	0.01-1	ng_mL	0.9959	
FOSA-IS	9.312	ISTD		505.90>78.00	505.90>172.00		ng_mL		
HFPO-DA*	6.946	Target	HFPO-DA-IS	284.95>169.05	284.95>185.05	0.01-1	ng_mL	0.9945	
HFPO-DA-IS	6.946	ISTD		286.85>168.90	286.85>118.85		ng_mL		
PFDoS	9.674	Target	PFDoDA-IS	699.00>79.90	699.00>98.90	0.0025-1	ng_mL	0.9912	
PFTrDS	9.878	Target	PFDoDA-IS	749.00>99.10	749.00>79.90	0.0025-1	ng_mL	0.9867	
PEESA	6.538	Target		315.00>135.00	315.00>82.90	0.001-1	ng_mL	0.9989	
PFBA**	4.547	Target	PFBA-IS	213.00>169.00		0.01 -1	ng_mL	0.9846	
PFBA-IS	4.541	ISTD		216.90>172.00			ng_mL		
PFBS**	5.982	Target	PFBS-IS	299.00>79.90	299.00>98.90	0.01 -1	ng_mL	0.9997	
PFBS-IS	6.139	ISTD		301.90>98.80	301.90>79.80		ng_mL		
PFDA	8.802	Target	PFDA-IS	513.00>469.00	513.00>219.05	0.0025-1	ng_mL	0.9984	
PFDA-IS	8.814	ISTD		519.00>473.90	519.00>219.00		ng_mL		
PFDoDA	9.454	Target	PFDoDA-IS	613.00>568.95	613.00>169.10	0.01-1	ng_mL	0.9979	
PFDoDA-IS	9.451	ISTD		614.90>570.10	614.90>269.10		ng_mL		
PFDS	9.155	Target	PFOS-IS	598.80>79.95	598.80>98.85	0.0001-1	ng_mL	0.9971	
PFHpA	7.389	Target	PFHpA-IS	363.10>319.00	363.10>169.00	0.0025-1	ng_mL	0.9905	
PFHpA-IS	7.381	ISTD		367.00>322.10	367.00>169.00		ng_mL		
PFHpS	7.974	Target		448.90>98.90	448.90>79.90	0.005-1	ng_mL	0.9956	
PFHxA	6.693	Target	PFHxA-IS	313.10>269.00	313.10>119.00	0.01-1	ng_mL	0.9994	
PFHxA-IS	6.692	ISTD		317.90>273.00	317.90>120.10		ng_mL		
PFHxDA-IS	10.208	ISTD		814.90>769.90	814.90>369.00		ng_mL		
PFHxS**	7.468	Target	PFHxS-IS	398.90>79.95	398.90>98.90	0.005-1	ng_mL	0.9988	
PFHxS-IS	7.636	ISTD		402.00>79.90	402.00>98.80		ng_mL		
PFNA	8.392	Target	PFNA-IS	463.00>418.95	463.00>219.00	0.01-1	ng_mL	0.9843	
PFNA-IS	8.375	ISTD		471.90>427.00	471.90>223.00		ng_mL		
PFNS	8.809	Target		549.10>79.90	549.10>98.90	0.005-1	ng_mL	0.9965	
PFOA**	7.943	Target	PFOA-IS	413.20>369.00	413.20>169.05	0.005-1	ng_mL	0.9978	
PFOA-IS	7.951	ISTD		421.00>376.10	421.00>172.00		ng_mL		
PFOS	8.387	Target	PFOS-IS	498.90>98.90	498.90>169.05	0.025-1	ng_mL	0.9858	
PFOS-IS	8.368	ISTD		506.90>79.90	506.90>98.80		ng_mL		
PFPeA	5.771	Target	PFPeA-IS	263.10>219.00	263.10>69.10	0.01-1	ng_mL	0.9989	
PFPeA-IS	5.861	ISTD		267.90>223.00	267.90>69.10		ng_mL		
PFPeS / PFPS	6.992	Target		349.20>79.95	349.20>98.95	0.005-1	ng_mL	0.9972	
PFTeDA	9.896	Target	PFTeDA-IS	713.00>669.05	713.00>169.05	0.005-1	ng_mL	0.9804	
PFTeDA-IS	9.892	ISTD		714.90>670.00	714.90>368.90		ng_mL		
PFTrDA	9.698	Target	PFDoDA-IS	663.00>619.00	663.00>169.00	0.005-1	ng_mL	0.9877	
PFUnDA	9.143	Target	PFUnDA-IS	563.00>518.95	563.00>269.05	0.005-1	ng_mL	0.9898	
PFUnDA-IS	9.15	ISTD		570.00>524.90	570.00>268.90		ng_mL		
PFUnDS	9.601	Target		649.00>79.95	649.00>98.95	0.0025-1	ng_mL	0.9917	
-							<u> </u>		

^{*} Contamination from ISTD** Contamination from egg matrix

Table 3 Reproducibility of spiked samples

	11CI-PF30UdS				_		_											
				F30NS		ONA		DSA		O-DA		FD ₀ S		FTrDS		ESA		-BA
	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL
	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy
Egg A QC 0.01	0.0101	100.64	0.0097	96.95	0.0102	102.08	0.0117	116.99	0.0088	88.39	0.0104	104.38	0.0067	67.41	0.0102	101.8	belov	w LOQ
Egg B QC 0.01	0.0107	106.84	0.0093	93.10	0.0096	95.63	0.0103	102.72	0.0062	61.63	0.0149	149.13	0.0117	117.46	0.0101	101.04	belov	w LOQ
Egg C QC 0.01	0.0092	91.70	0.0104	104.12	0.0100	100.08	0.0115	114.69	0.0112	111.54	0.0102	101.98	0.0108	108.27	0.0104	104.31	belov	w LOQ
Egg D QC 0.01	0.0113	113.08	0.0093	93.36	0.0087	87.41	0.0116	115.99	0.0099	98.96	0.0100	100.01	0.0061	61.48	0.0105	104.70	belov	w LOQ
Egg E QC 0.01	0.0109	108.64	0.0096	96.32	0.0098	98.12	0.0101	101.33	0.0073	72.54	0.0113	112.64	0.0117	117.26	0.0102	102.18	belov	w LOQ
Mean		104.18		96.77		96.66		110.34		86.61		113.63		94.38		102.81		
SD		8.28		4.45		5.70		7.65		19.99		20.42		27.65		1.61		
%RSD		7.95		4.60		5.89		6.94		23.09		17.97		29.30		1.57		
	0.1 r	0.1 ng/mL 0.1 ng/mL		0.1	0.1 ng/mL 0.1 ng/mL		ng/mL	0.1 ng/mL 0.1 ng/mL		0.1 ng/mL		0.1 ng/mL		0.1 ng/mL				
	Conc.																	
	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy
Egg A QC 0.1	0.0992	Accuracy 99.25	Conc. 0.0922	Accuracy 92.24	Conc. 0.1027	Accuracy 102.72	Conc. 0.0965	Accuracy 96.47	Conc. 0.1102				Conc. 0.0984	Accuracy 98.35	Conc. 0.1062	Accuracy 106.16		Accuracy *155.15
Egg A QC 0.1 Egg B QC 0.1										Accuracy	Conc.	Accuracy					Conc.	
	0.0992	99.25	0.0922	92.24	0.1027	102.72	0.0965	96.47	0.1102	Accuracy 110.25	Conc. 0.1105	Accuracy 110.53	0.0984	98.35	0.1062	106.16	Conc. 0.1551	*155.15
Egg B QC 0.1	0.0992 0.0816	99.25 81.65	0.0922 0.0877	92.24 87.75	0.1027 0.0971	102.72 97.10	0.0965 0.1115	96.47 111.48	0.1102 0.1055	Accuracy 110.25 105.46	Conc. 0.1105 0.1281	Accuracy 110.53 128.08	0.0984 0.1112	98.35 111.16	0.1062 0.1052	106.16 105.17	Conc. 0.1551 0.3562	*155.15 *356.16
Egg B QC 0.1 Egg C QC 0.1	0.0992 0.0816 0.0894	99.25 81.65 89.42	0.0922 0.0877 0.0916	92.24 87.75 91.58	0.1027 0.0971 0.0945	102.72 97.10 94.55	0.0965 0.1115 0.0985	96.47 111.48 98.47	0.1102 0.1055 0.1010	Accuracy 110.25 105.46 100.99	Conc. 0.1105 0.1281 0.1028	Accuracy 110.53 128.08 102.79	0.0984 0.1112 0.0956	98.35 111.16 95.60	0.1062 0.1052 0.1018	106.16 105.17 101.79	Conc. 0.1551 0.3562 0.1057	*155.15 *356.16 *105.71
Egg B QC 0.1 Egg C QC 0.1 Egg D QC 0.1	0.0992 0.0816 0.0894 0.0923	99.25 81.65 89.42 92.31	0.0922 0.0877 0.0916 0.0831	92.24 87.75 91.58 83.09	0.1027 0.0971 0.0945 0.0963	102.72 97.10 94.55 96.33	0.0965 0.1115 0.0985 0.1136	96.47 111.48 98.47 113.57	0.1102 0.1055 0.1010 0.0993	Accuracy 110.25 105.46 100.99 99.32	Conc. 0.1105 0.1281 0.1028 0.1037	Accuracy 110.53 128.08 102.79 103.71	0.0984 0.1112 0.0956 0.1143	98.35 111.16 95.60 114.29	0.1062 0.1052 0.1018 0.1020	106.16 105.17 101.79 101.96	Conc. 0.1551 0.3562 0.1057 0.1197	*155.15 *356.16 *105.71 *119.69
Egg B QC 0.1 Egg C QC 0.1 Egg D QC 0.1 Egg E QC 0.1	0.0992 0.0816 0.0894 0.0923	99.25 81.65 89.42 92.31 105.99	0.0922 0.0877 0.0916 0.0831	92.24 87.75 91.58 83.09 91.92	0.1027 0.0971 0.0945 0.0963	102.72 97.10 94.55 96.33 93.35	0.0965 0.1115 0.0985 0.1136	96.47 111.48 98.47 113.57 90.64	0.1102 0.1055 0.1010 0.0993	Accuracy 110.25 105.46 100.99 99.32 106.37	Conc. 0.1105 0.1281 0.1028 0.1037	Accuracy 110.53 128.08 102.79 103.71 102.22	0.0984 0.1112 0.0956 0.1143	98.35 111.16 95.60 114.29 99.21	0.1062 0.1052 0.1018 0.1020	106.16 105.17 101.79 101.96 106.13	Conc. 0.1551 0.3562 0.1057 0.1197	*155.15 *356.16 *105.71 *119.69

	Р	FBS	PFDA		PFI	DoDA	Р	FDS	PF	НрА	PF	HpS	PF	HxA	PF	HxS	PI	FNA	
	0.01 ng/mL		0.01 ng/mL 0.01 ng/mL		0.01 ng/mL		0.01	ng/mL	0.01	ng/mL	0.01 ng/mL		0.01 ng/mL		0.01 ng/mL		0.01	ng/mL	
	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	
Egg A QC 0.01	0.0100	99.89	0.0124	123.67	0.0081	80.88	0.0097	97.40	0.0097	97.33	0.0099	99.04	0.0107	106.80	0.0101	101.16	0.0093	92.70	
Egg B QC 0.01	0.0117	116.9	0.0347	*346.61	0.0314	*314.12	0.0093	92.53	0.0125	*124.63	0.0108	107.58	0.0111	111.20	0.0205	*204.82	0.0253	*252.65	
Egg C QC 0.01	0.0119	119.42	0.0107	106.55	0.0106	105.54	0.0088	87.75	0.0096	96.29	0.0103	102.74	0.0103	103.00	0.0089	88.72	0.0153	153.41	
Egg D QC 0.01	0.0095	95.05	0.0105	104.55	0.0090	90.09	0.0072	71.81	0.0091	90.63	0.0098	97.96	0.0115	114.63	0.0111	111.11	0.0115	115.49	
Egg E QC 0.01	0.0092	92.33	0.0297	*297.08	0.0315	*314.53	0.0085	85.27	0.0148	*147.64	0.0116	116.28	0.0121	121.23	0.0370	*370.26	0.0348	*347.85	
Mean		104.72		111.59		92.17		86.95		94.75		104.72		111.37		100.33		120.53	
SD		12.60		10.51		12.46		9.66		3.61		7.48		7.05		11.22		30.67	
%RSD		12.03		9.42		13.52		11.11		3.81		7.14		6.33		11.18		25.44	
	0.1 ו	ng/mL	. 0.1 ng/mL		0.1 ng/mL		0.1 ng/mL		0.1 r	0.1 ng/mL		0.1 ng/mL		0.1 ng/mL		0.1 ng/mL		0.1 ng/mL	
	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	
Egg A QC 0.1	0.0975	97.52	0.1148	114.81	0.0974	97.43	0.0901	90.11	0.0973	97.26	0.1074	107.45	0.1039	103.89	0.1038	103.78	0.0906	90.59	
Egg B QC 0.1	0.0945	94.50	0.1168	116.80	0.1076	107.56	0.0926	92.62	0.1013	101.27	0.1107	110.70	0.0986	98.58	0.1082	108.25	0.0925	92.55	
Egg C QC 0.1	0.1001	100.07	0.0832	83.20	0.0863	86.28	0.0979	97.90	0.1051	105.10	0.1127	112.74	0.0986	98.62	0.0816	81.56	0.1043	104.30	
Egg D QC 0.1	0.0965	96.50	0.1006	100.57	0.0921	92.13	0.0991	99.13	0.0980	98.05	0.1087	108.71	0.0964	96.41	0.0956	95.64	0.1056	105.57	
Egg E QC 0.1	0.0937	93.66	0.1312	131.21	0.1040	104.03	0.0854	85.37	0.0938	93.79	0.1153	115.34	0.1040	103.99	0.1111	111.13	0.1194	119.44	
Mean		96.45		109.32		97.49		93.03		99.09		110.99		100.30		100.07		102.49	
SD		2.54		18.19		8.64		5.66		4.28		3.15		3.44		11.89		11.62	
%RSD		2.64		16.64		8.86		6.09		4.32		2.84		3.43		11.88		11.34	

	PF	FNS	PI	FOA	Pi	os	PF	PeA	PF	PS	PF	ГeDA	PF"	TrDA	PFl	JnDA	PFU	JnDS
	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL	0.01	ng/mL
	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy	Conc.	Accuracy
Egg A QC 0.01	0.0109	109.26	0.0098	97.74	belo	w LOQ	0.0070	69.92	0.0102	102.39	0.0110	109.83	0.0085	85.08	0.0110	109.54	0.0086	86.25
Egg B QC 0.01	0.0108	108.41	0.0510	*509.67	belo	w LOQ	0.0084	84.20	0.0104	103.83	0.0183	*183.07	0.0265	*265.47	0.0248	*247.73	0.0123	122.98
Egg C QC 0.01	0.0100	99.86	0.0115	114.81	belo	w LOQ	0.0118	117.66	0.0104	103.71	0.0091	90.60	0.0074	73.54	0.0111	111.06	0.0090	90.32
Egg D QC 0.01	0.0095	95.28	0.0105	104.76	belo	w LOQ	0.0104	103.82	0.0097	97.22	0.0115	115.26	0.0085	85.21	0.0111	111.27	0.0082	82.14
Egg E QC 0.01	0.0106	106.16	0.0923	*922.92	belo	w LOQ	0.0091	90.57	0.0113	113.23	0.0196	*196.07	0.0330	*329.81	0.0230	*229.98	0.0111	111.09
Mean		103.79		105.77				93.23		104.08		105.23		81.28		110.62		98.56
SD		6.02		8.58				18.31		5.78		12.96		6.70		0.94		17.62
%RSD		5.80		8.11				19.64		5.56		12.31		8.24		0.85		17.88
%RSD		5.80		8.11				19.64		5.56		12.31		8.24		0.85		17.88
%RSD	0.1 n	5.80 ng/mL	0.1 r	8.11 ng/mL	0.1 r	ng/mL	0.1 r	19.64 ng/mL	0.1 r	5.56 ng/mL	0.1 r	12.31 ng/mL	0.1 r	8.24 ng/mL	0.1 r	0.85 ig/mL	0.1 r	17.88 ng/mL
%RSD	0.1 r Conc.		0.1 r Conc.		0.1 r Conc.	ng/mL Accuracy	0.1 r Conc.		0.1 r Conc.		0.1 r Conc.		0.1 r Conc.		0.1 r Conc.		0.1 r Conc.	
Egg A QC 0.1		ng/mL		ng/mL		_		ıg/mL		ıg/mL		ıg/mL		ng/mL		ıg/mL		ng/mL
	Conc.	ng/mL Accuracy	Conc.	ng/mL Accuracy	Conc.	Accuracy	Conc.	ig/mL Accuracy	Conc.	ig/mL Accuracy	Conc.	ig/mL Accuracy	Conc.	ng/mL Accuracy	Conc.	g/mL Accuracy	Conc.	ng/mL Accuracy
Egg A QC 0.1	Conc. 0.0971	ng/mL Accuracy 97.10	Conc. 0.1009	ng/mL Accuracy 100.88	Conc. 0.0856	Accuracy 85.60	Conc. 0.0986	ng/mL Accuracy 98.56	Conc. 0.1131	ng/mL Accuracy 113.11	Conc. 0.1189	ng/mL Accuracy 118.90	Conc. 0.1067	ng/mL Accuracy 106.69	Conc. 0.1024	g/mL Accuracy 102.41	Conc. 0.0900	ng/mL Accuracy 89.99
Egg A QC 0.1 Egg B QC 0.1	Conc. 0.0971 0.0855	ng/mL Accuracy 97.10 85.53	Conc. 0.1009 0.1410	ng/mL Accuracy 100.88 *140.97	Conc. 0.0856 0.3793	85.60 *379.3	Conc. 0.0986 0.1044	Accuracy 98.56 104.40	Conc. 0.1131 0.1036	ng/mL Accuracy 113.11 103.57	Conc. 0.1189 0.1480	ng/mL Accuracy 118.90 *148.04	Conc. 0.1067 0.1265	ng/mL Accuracy 106.69 126.50	Conc. 0.1024 0.1198	ag/mL Accuracy 102.41 119.76	Conc. 0.0900 0.0796	ng/mL Accuracy 89.99 79.64
Egg A QC 0.1 Egg B QC 0.1 Egg C QC 0.1	Conc. 0.0971 0.0855 0.0881	ng/mL Accuracy 97.10 85.53 88.14	Conc. 0.1009 0.1410 0.1042	ng/mL Accuracy 100.88 *140.97 104.22	Conc. 0.0856 0.3793 0.0953	85.60 *379.3 95.29	Conc. 0.0986 0.1044 0.0976	g/mL Accuracy 98.56 104.40 97.58	Conc. 0.1131 0.1036 0.1015	ng/mL Accuracy 113.11 103.57 101.55	Conc. 0.1189 0.1480 0.1143	ng/mL Accuracy 118.90 *148.04 114.29	Conc. 0.1067 0.1265 0.0943	ng/mL Accuracy 106.69 126.50 94.32	Conc. 0.1024 0.1198 0.0992	g/mL Accuracy 102.41 119.76 99.23	Conc. 0.0900 0.0796 0.0894	ng/mL Accuracy 89.99 79.64 89.45
Egg A QC 0.1 Egg B QC 0.1 Egg C QC 0.1 Egg D QC 0.1	Conc. 0.0971 0.0855 0.0881 0.1008	ng/mL Accuracy 97.10 85.53 88.14 100.85	0.1009 0.1410 0.1042 0.0908	ng/mL Accuracy 100.88 *140.97 104.22 90.83	Conc. 0.0856 0.3793 0.0953 0.0999	85.60 *379.3 95.29 99.93	Conc. 0.0986 0.1044 0.0976 0.0949	ng/mL Accuracy 98.56 104.40 97.58 94.93	Conc. 0.1131 0.1036 0.1015 0.1006	ag/mL Accuracy 113.11 103.57 101.55 100.64	Conc. 0.1189 0.1480 0.1143 0.1053	ng/mL Accuracy 118.90 *148.04 114.29 105.34	0.1067 0.1265 0.0943 0.1060	ng/mL Accuracy 106.69 126.50 94.32 105.96	Conc. 0.1024 0.1198 0.0992 0.0976	g/mL Accuracy 102.41 119.76 99.23 97.57	Conc. 0.0900 0.0796 0.0894 0.0794	ng/mL Accuracy 89.99 79.64 89.45 79.39
Egg A QC 0.1 Egg B QC 0.1 Egg C QC 0.1 Egg D QC 0.1 Egg E QC 0.1	Conc. 0.0971 0.0855 0.0881 0.1008	ng/mL Accuracy 97.10 85.53 88.14 100.85 103.45	0.1009 0.1410 0.1042 0.0908	ng/mL Accuracy 100.88 *140.97 104.22 90.83 *170.69	Conc. 0.0856 0.3793 0.0953 0.0999	85.60 *379.3 95.29 99.93 *429.96	Conc. 0.0986 0.1044 0.0976 0.0949	98.56 104.40 97.58 94.93 95.49	Conc. 0.1131 0.1036 0.1015 0.1006	ng/mL Accuracy 113.11 103.57 101.55 100.64 108.69	Conc. 0.1189 0.1480 0.1143 0.1053	ng/mL Accuracy 118.90 *148.04 114.29 105.34 *151.42	0.1067 0.1265 0.0943 0.1060	ng/mL Accuracy 106.69 126.50 94.32 105.96 117.94	Conc. 0.1024 0.1198 0.0992 0.0976	ng/mL Accuracy 102.41 119.76 99.23 97.57 118.07	Conc. 0.0900 0.0796 0.0894 0.0794	ng/mL Accuracy 89.99 79.64 89.45 79.39 95.59

^{*}compound already found in sample

Table 4 Sample results (positive results only)

	PFBA	PFBS	PFDA	PFDoDA	PFHpA	PFHpS	PFHxS	PFNA	PFOA	PFOS	PFPeA	PFTeDA	PFTrDA	PFUnDA	PFUnDS
	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.
Egg A	<l0q< th=""><th><l0q< th=""><th></th><th><l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th></th><th><l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></l0q<></th></l0q<>		<l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></l0q<>											
Egg B	0.2662	<l0q< th=""><th>0.0221</th><th>0.0167</th><th>0.0032</th><th></th><th>0.0125</th><th>0.0273</th><th>0.0411</th><th>0.3121</th><th></th><th>0.0125</th><th>0.0182</th><th>0.0144</th><th></th></l0q<>	0.0221	0.0167	0.0032		0.0125	0.0273	0.0411	0.3121		0.0125	0.0182	0.0144	
Egg C	<l0q< th=""><th><l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th><l0q< th=""><th></th><th>0.0114</th><th></th><th></th><th></th><th></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th><l0q< th=""><th></th><th>0.0114</th><th></th><th></th><th></th><th></th></l0q<></th></l0q<>							<l0q< th=""><th></th><th>0.0114</th><th></th><th></th><th></th><th></th></l0q<>		0.0114				
Egg D	<l0q< th=""><th><l0q< th=""><th></th><th></th><th></th><th></th><th><l0q< th=""><th></th><th><l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th></th><th></th><th></th><th></th><th><l0q< th=""><th></th><th><l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th></l0q<></th></l0q<></th></l0q<>					<l0q< th=""><th></th><th><l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th></l0q<></th></l0q<>		<l0q< th=""><th></th><th></th><th></th><th></th><th></th><th></th></l0q<>						
Egg E	0.1912	<l0q< th=""><th>0.0207</th><th>0.0153</th><th>0.0043</th><th><l0q< th=""><th>0.0257</th><th>0.0198</th><th>0.1009</th><th>0.2567</th><th></th><th>0.0151</th><th>0.0162</th><th>0.013</th><th>0.0026</th></l0q<></th></l0q<>	0.0207	0.0153	0.0043	<l0q< th=""><th>0.0257</th><th>0.0198</th><th>0.1009</th><th>0.2567</th><th></th><th>0.0151</th><th>0.0162</th><th>0.013</th><th>0.0026</th></l0q<>	0.0257	0.0198	0.1009	0.2567		0.0151	0.0162	0.013	0.0026

Figure 3 Scheme of the Nexera on-line SPE LCMS-8060NX system

■ The Package

■ Main Unit

LCMS-8060NX: TQ Mass spectrometer

Nexera X3: Liquid chromatograph

CBM-40 **DGU-405** 2x LC-40D X3 LC-40B X3 SIL-40C X3 CTO-40S

2x Reservoir Tray

□ Accessory

Valve: FCV-0206H3

Mixer: 2x Mir20 µL

Loop: 50 µL

■ Main Consumables:

Shim-pack Scepter C18

(50 mm x 2.1 mm I.D., 1.9 μm; P/N 227-31012-03)

Shim-pack GIST HP C18-AQ (2x)

(30 mm x 3.0 mm I.D., 3 μm; P/N 227-30766-01)

EVOLUTE® Express ABN on-line SPE

cartridge (Biotage)

(30 mm x 2.1 mm I.D; P/N OSPE-620-32150)

Shimadzu LabTotal Vial for LC/LCMS

(P/N 227-34001-01)

RESTEK® Q-Sep QuEChERS Extraction

Packets / AOAC Method

(P/N 25851)

Software and Libraries

LabSolutions LCMS

LabSolutions Insight

■ Conclusions

This application note describes an on-line SPE LC-MS/MS method to monitor 27 PFAS and internal standards in egg matrix. This proof of concept study using the LCMS-8060NX coupled with a Nexera UHPLC system equipped for on-line SPE demonstrates a sensitive method for PFAS analysis in egg matrix with minimal sample preparation steps.

Nexera, Shim-pack, and Shim-pack Scepter are trademarks of Shimadzu Corporation in Japan and/or other countries. EVOLUTE is the trade mark of Biotage AB in the USA and/or other countries. Q-Sep QuEChERS ExtractionPackets is the trade mark of Restek in the USA and/or other countries.

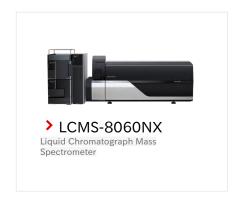
Shimadzu Corporation www.shimadzu.com/an/

SHIMADZU Europa GmbH, www.shimadzu.eu

05-SCA-210-070-EN First Edition: Aug. 2023

For Research Use Only. Not for use in diagnostic procedures.
This publication may contain references to products that are not available in your country. Please contact us to check the availability of

these products in your country.


The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of

See http://www.shimadzu.com/about/trademarks/index.html for details.

See http://www.shimadzu.com/about/trademarks.index.html for details. Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®". The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice

> Please fill out the survey

Related Products Some products may be updated to newer models.

Related Solutions

