

Application News

Inductively Coupled Plasma Mass Spectrometry ICPMS-2050 LF

Determination of 23 Nutritional, Essential and Toxic Elements in Urine by ICP-MS Using Alkaline Dilution

Jan Knoop Shimadzu Europa GmbH

User Benefits

- ◆ Urine calibrator allows for simple preparation and quick measurement of 23 elements
- ◆ Alkaline media ensures safe determination of iodine and excellent mercury washout capabilities
- ◆ LabSolutions™ ICPMS allows for high degree of automation by Extended Rinsing function and e.g. control of QC sample or internal standard recovery

■ Introduction

The analysis of nutritional, essential, and toxic elements in urine is a critical tool for assessing human health, environmental exposure, and metabolic function. Urine serves as a non-invasive biological matrix that reflects the body's excretion of trace elements, providing valuable insights into nutritional deficiencies, toxic metal exposure, and the status of essential minerals.

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a highly sensitive and precise analytical technique that enables the detection of trace elements at ultra-low concentrations, making it ideal for comprehensive urine analysis.

■ Urine Composition

Urine is mainly composed of water, which accounts for approximately 91–96% of its total volume. The remaining portion consists of inorganic salts, urea, organic compounds, and organic ammonium salts.¹⁾

Among the organic compounds, urea is the most abundant, typically present at concentrations of 9–23 g/L.

Inorganic salts and electrolytes are also significant constituents of urine. The total dissolved solids (TDS) in urine ranges between 20 and 40 g/L. Sodium and chloride are the predominant ions, with sodium levels ranging from 1 to 4 g/L and chloride levels from 2 to 8 g/L. Potassium is another key electrolyte, typically present at concentrations of 1–3 g/L. Other inorganic substances include calcium, magnesium, phosphate, and sulfate, which are excreted in smaller amounts.²⁾

Trace elements such as zinc, copper, and selenium are present in minute quantities, typically in the microgram per liter range, while toxic elements like lead, mercury, and cadmium are usually found at even lower levels under normal conditions.

Fig. 1 ICPMS-2050 LF with AS-20 Autosampler

■ Sample Preparation and Calibration

Considering the elevated TDS level, sample dilution is recommended to achieve a stable and durable analysis method and subsequently to increase overall sample throughput.

While applying acidic dilution to body fluid samples might cause clogging the sample line or nebulizer due to denatured proteins, alkaline dilution media (Table 1) was selected to 10-fold dilute the urine samples. Alkaline media also allows for stabilization of further elements like iodine, which is partially volatile in acidic media.³⁾

Table 1 Components of Alkaline Diluent prepared in Water*1

Reagent	Description	Purpose
Ammonia	25% (v/v), Suprapur®,	adjusts alkaline pH
	Merck, Germany	
Triton®X-100	p.A.,	Homogenizes sample &
	Merck, Belgium	supports lyse of cells
EDTA (Na-free)	>99.999%	stabilizes ions in solution
	Sigma-Aldrich, USA	
Isopropanol	Electronic Grade SLSI,	compensates carbon
	VWR, USA	enhancement effect*2

^{*1} All solutions are prepared using ASTM Type 1 ultrapure water (18.2 M Ω resistivity, Arium $^\circ$ Pro VF, Sartorius AG).

For matrix matched calibration, Urine Calibrator was injected in different dilution levels (ClinCal® 9988, Recipe, cf. Table 2). For quality control, Urine Control Level 1-2 (ClinCheck® 8847-8849, Recipe) and Trace Elements in urine L-2 (Seronorm™, SERO) were measured in beginning and end of the batch (more frequent repetitions can also be selected).

^{*2} Carbon present in sample will otherwise increase response of less ionized elements (e.g. As, Se), resulting in false positives.

Table 2 Calibration scheme using Recipe $^{\circ}$ ClinCal $^{\circ}$ 9988 Urine Calibrator in different dilution levels, in μ g/L

	CAL 1 Diluent	Cal 2	Cal 3	Cal 4	Cal 5
Element	Blank	12.5%	25%	50%	100%
Al	0	15.8	31.5	63.0	126
As	0	9.1	18.1	36.3	72.5
Ba	0	9.7	19.4	38.9	77.7
Be	0	0.04	0.08	0.15	0.30
Cd	0	2.4	4.8	9.7	19.3
Co	0	2.5	5.0	9.9	19.8
Cr	0	2.5	5.1	10.2	20.3
Cu	0	18.4	36.8	73.5	147
Fe	0	32.5	65.0	130	260
Hg	0	4.1	8.1	16.3	32.5
Цα	single element	solution	Cal 6	Cal 7	Cal8
Hg	prepared in dilue	nt only \rightarrow	2.5	10.0	25.0
I	0	75.3	151	301	602
Mg	0	7475	14950	29900	59800
Mn	0	2.5	5.1	10.2	20.3
Mo	0	14.9	29.8	59.5	119
Ni	0	3.7	7.3	14.7	29.3
Pb	0	13.8	27.5	55.0	110
Pt	0	0.24	0.48	0.95	1.90
Sb	0	7.4	14.7	29.5	58.9
Se	0	13.5	27.0	54.0	108
Sn	0	1.6	3.2	6.4	12.8
TI	0	3.0	6.0	12.0	23.9
V	0	7.8	15.6	31.2	62.4
Zn	0	83.5	167	334	668

■ Configuration & Measurement Condition

The ICPMS-2050 LF system configuration is summarized in Table 3. More than 20 elements have been selected for quantification (Table 4).

To remove interferences the ICPMS-2050 highly efficient collisionand reaction cell was applied by adding He or H₂.

In most cases the trace region is of interest. To improve the precision in the low-end trace region all calibration curves (Fig. 2) are inversely weighted (1/l).

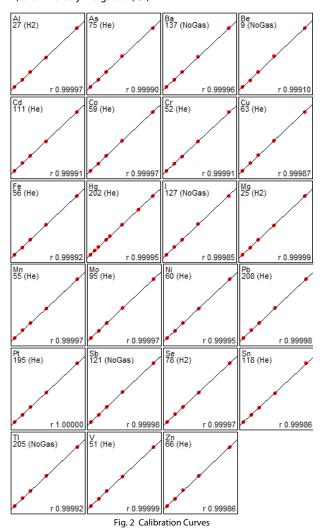


Table 3 ICPMS-2050 LF Configuration and Basic Method Settings

Autosampler	:	AS-20 Round Table / Dual Rinse
		with 5x spacer for low dead volume
Spray Chamber	:	Cyclonic Twister
Chamber Temperature	:	5 °C
Nebulizer	:	Coaxial 04UES, ~ 0.4 ml/min
Peristaltic Pump	:	4 Channels, 12-roller @ 20 rpm
Internal Standard Tubing	:	PVC, flared-end, orange-blue
Sample Tubing	:	PVC, flared-end, black-black
Drain	:	Automatic overflow type
Torch	:	Shimadzu Mini-Torch
Cone Material	:	Ni
Sampling Depth	:	9.0 mm
RF-Power	:	1.2 kW
Plasma Gas	:	Ar 9.00 L/min
Auxiliary Gas	:	Ar 1.10 L/min
Carrier Gas	:	Ar 0.85 L/min
Cell Gas	:	He 6.0 mL/min
		H ₂ 7.0 mL/min
Cell Voltage	:	-21.0 V
Energy Filter	:	7.0 V

Table 4 Elements and Isotopes

Standard Standard Al 27 3 H ₂ 45 Sc	Element	Isotope	Integration	Cell Gas	Internal
As 75 0.3 He 89Y Ba 137 0.1 NoGas 103Rh Be 9 3 NoGas 45Sc Cd 111 2 He 103Rh Co 59 0.5 He 45Sc Cr 52 1 He 103Rh Cu 63 0.1 He 89Y Fe 56 0.2 He 45Sc Hg 202 0.5 He 193Ir I 127 0.1 NoGas 103Rh Mg 25 0.1 H, 45Sc Mn 55 2 He 45Sc	Element	isotope	time [s]	Cell Gas	Standard
Ba 137 0.1 NoGas 103Rh Be 9 3 NoGas 45Sc Cd 111 2 He 103Rh Co 59 0.5 He 45Sc Cr 52 1 He 103Rh Cu 63 0.1 He 89Y Fe 56 0.2 He 45Sc Hg 202 0.5 He 193Ir I 127 0.1 NoGas 103Rh Mg 25 0.1 H ₂ 45Sc Mn 55 2 He 45Sc	AI	27	3	Н,	
Be 9 3 NoGas 45 Cc Cd 111 2 He 103 Rh Co 59 0.5 He 45 Sc Cr 52 1 He 103 Rh Cu 63 0.1 He 89 Y Fe 56 0.2 He 45 Sc Hg 202 0.5 He 193 r I 127 0.1 NoGas 103 Rh Mg 25 0.1 H, 45 Sc Mn 55 2 He 45 Sc	As	75	0.3	He	
Cd 111 2 He 103Rh Co 59 0.5 He 45Sc Cr 52 1 He 103Rh Cu 63 0.1 He 89Y Fe 56 0.2 He 45Sc Hg 202 0.5 He 193Ir I 127 0.1 NoGas 103Rh Mg 25 0.1 H ₂ 45Sc Mn 55 2 He 45Sc	Ba	137	0.1	NoGas	¹⁰³ Rh
Co 59 0.5 He 45 Sc Cr 52 1 He 103 Rh Cu 63 0.1 He 89 Y Fe 56 0.2 He 45 Sc Hg 202 0.5 He 193 lr I 127 0.1 NoGas 103 Rh Mg 25 0.1 H ₂ 45 Sc Mn 55 2 He 45 Sc	Be	9	3	NoGas	⁴⁵ Sc
Cr 52 1 He 103Rh Cu 63 0.1 He 89Y Fe 56 0.2 He 45Sc Hg 202 0.5 He 193Ir I 127 0.1 NoGas 103Rh Mg 25 0.1 H ₂ 45Sc Mn 55 2 He 45Sc	Cd	111	2	He	¹⁰³ Rh
Cu 63 0.1 He 89Y Fe 56 0.2 He 45Sc Hg 202 0.5 He 193Ir I 127 0.1 NoGas 103Rh Mg 25 0.1 H ₂ 45Sc Mn 55 2 He 45Sc	Co	59	0.5	He	⁴⁵ Sc
Fe 56 0.2 He 45 Sc Hg 202 0.5 He 193 lr I 127 0.1 NoGas 103 Rh Mg 25 0.1 H ₂ 45 Sc Mn 55 2 He 45 Sc	Cr	52	1	He	¹⁰³ Rh
Hg 202 0.5 He 193 lr I 127 0.1 NoGas 103 Rh Mg 25 0.1 H ₂ 45 Sc Mn 55 2 He 45 Sc	Cu	63	0.1	He	⁸⁹ Y
I 127 0.1 NoGas 103Rh Mg 25 0.1 H ₂ 45Sc Mn 55 2 He 45Sc	Fe	56	0.2	He	⁴⁵ Sc
Mg 25 0.1 H2 45 Sc Mn 55 2 He 45 Sc	Hg	202	0.5	He	¹⁹³ lr
Mn 55 2 He ⁴⁵ Sc	1	127	0.1	NoGas	¹⁰³ Rh
	Mg	25	0.1	H ₂	⁴⁵ Sc
Mo 95 0.2 He ⁸⁹ Y	Mn	55	2	He	⁴⁵ Sc
	Мо	95	0.2	He	
Ni 60 0.5 He ⁸⁹ Y	Ni	60	0.5	He	⁸⁹ Y
Pb 208 0.2 He ¹⁹³ lr	Pb	208	0.2	He	¹⁹³ lr
Pt 195 3 He ¹⁹³ lr	Pt	195	3	He	¹⁹³ lr
Sb 121 0.2 NoGas ¹⁰³ Rh	Sb	121	0.2	NoGas	
Se 78 1 H ₂ ⁸⁹ Y	Se	78	1	H ₂	
Sn 118 1 He ¹⁰³ Rh	Sn	118	1	He	¹⁰³ Rh
TI 205 0.1 NoGas ¹⁹³ lr	TI	205	0.1	NoGas	¹⁹³ lr
V 51 1 He ⁴⁵ Sc	V	51	1	He	⁴⁵ Sc
Zn 66 0.1 He ⁸⁹ Y	Zn	66	0.1	He	⁸⁹ Y

■ Results and Discussion

Influence of Sample Matrix

The calibration was created by simple dilution of reference material. Thus, the matrix content is given in Cal5 but reduced for lower concentration levels (Cal 2 – Cal 4).

A complementary matrix-free calibration is analyzed for Mercury (Cal 6 – Cal 8) in a similar concentration range within the same method.

The results of both approaches are combined (Fig. 2, Hg) in one plot and show perfect alignment, which demonstrates the system and method parameters are well selected to compensate even different salt levels and give a further prove for the ability to allow for a precisely determination of mercury.

Reduction of Memory Effect and Carry-Over

Mercury is well known as being affected by stronger memory effects, possibly resulting in stronger carry-over contamination after overrange samples.

Using alkaline media reduces the memory effect and its negative consequences. For example, measuring a blank sample after measuring Cal5 sample (Hg 32.5ppb), the carry-over is below 0.1%.

In addition, the LabSolutions[™] Extended Rinsing function allows to automatically run an additional rinsing steps after a specified threshold is exceeded. In this method, the threshold was selected to be 1.3 times the maximum upper concentration of calibration curve, to ensure low carry-over even for higher concentrated samples.

Sensitivity, Stability and QC-Recovery

In general, the method is developed to analyze the usual reference ranges (Table 5). The ICPMS-2050 LF sensitivity is determined by standard deviation of the calibration curve blank sample. Because samples and reference samples are treated in the same way, the dilution factor can be disregarded, allowing to use the given limit of quantification (LOQ) as approximation for the method quantification limit (MQL).

Table 5 ICPMS-2050 LF method sensitivity for undiluted urine and common reference ranges [ug/L]

and common reference ranges [µg/L]				
Element	LOD (3s) ≈ MDL	LOQ (10s) ≈ MQL	Common Reference Range ⁴⁾	ICPMS-2050 LF suitable?
Al	0.8	2.8	< 15.0	•
As	0.05	0.15	< 15.0	•
Ва	0.04	0.12	< 10.0	•
Be	0.001	0.003	< 0.05	•
Cd	0.008	0.026	< 0.8	•
Co	0.07	0.23	< 1.5	•
Cr	0.13	0.43	< 0.6	•
Cu	0.10	0.32	< 5-50	•
Fe	0.7	2.5	<100 μg/d	•
Hg	0.06	0.19	< 1.0	•
1	0.13	0.44	100-199	
'	0.13	0.44	insufficiency < 20-99	
Mg	8	27	50-150 mg/d	•
Mn	0.04	0.14	< 1.9	•
Mo	0.09	0.29	< 7-94	•
Ni	0.06	0.19	< 3.0	•
Pb	0.03	0.11	< 3.8	•
Pt	0.002	0.006	< 0.20	•
Sb	0.007	0.024	< 0.2	•
Se	0.09	0.31	2-31	•
Sn	0.20	0.66	< 2.0	•
TI	0.005	0.017	< 0.5	•
V	0.021	0.070	< 0.2	•
Zn	1.3	4.2	150-1200	•

The method was stable over the whole runtime (~70 samples) indicated by internal standard recovery (Fig. 4) and in addition by recovery of reference samples.

Urine control L1 and L2 (Recipe) as well as L2 (Seronorm) included to beginning and end of batch have been well traced back to given values within specified reference ranges. The reference values may be entered to the LabSolutions $^{\!\top\!\!M}$ ICPMS method directly, allowing for quick assessment of the quality of the results obtained from each run, as outliers will be highlighted automatically.

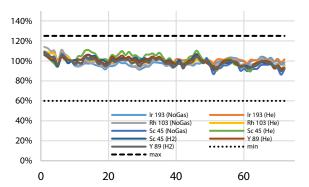


Fig. 3 Internal Standard Stability Plot, standardized to the calibration curve matrix sample (CAL5 = 100 %)

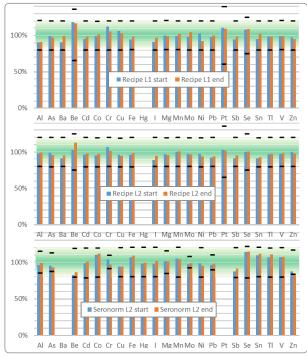


Fig. 4 Recovery of Reference Samples

■ Conclusion

Sample cycle times (including rinse) of below 3 minutes can be achieved without using complex sample injection techniques.

This short time can be achieved by the collision/reaction cell's extreme low gas switching times (<5 sec.) and features like ProActive Rinsing, which allows to already start rinsing before the actual measurement is finished. This is possible because the remaining sample in the capillary is further injected (measured), before rinse solution reaches the nebulizer.

For routine use, the ICPMS-2050 LF running alkaline media is highly suitable for analyzing nutritional, essential, and toxic elements in urine samples, even including iodine.

<References>

- Rose C, Parker A, Jefferson B, Cartmell E. The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Crit Rev Environ Sci Technol (2015)
- 2) Putnam, D.F. Composition and concentrative properties of human urine. NASA Contractor Reports (1971)
- 3) Nelms, S., ICP Mass Spectrometry Handbook, CRC Press (2005)
- Medical laboratory Bremen, https://www.mlhb.de/analysen (last access date 21.05.2025)

<Related Applications>

- Determination of 20 Nutritional, Essential and Toxic Elements in Blood Serum by ICP-MS using Alkaline Dilution, <u>Application</u> <u>News 05-SCA-116-010-EN</u>
- Determination of Essential and Toxic Elements in Urine by ICPMS-2050 using Acidic Dilution, <u>Application News 04-AD-0312-EN</u>

LabSolutions is a trademark of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

Shimadzu Corporation www.shimadzu.com/an/

SHIMADZU Europa GmbH, www.shimadzu.eu

For Research Use Only. Not for use in diagnostic procedures.

05-SCA-116-013-EN Fir

First Edition: June 2025

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See http://www.shimadzu.com/about/trademarks/index.html for details.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not

they are used with trademark symbol "TM" or "@".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

> Please fill out the survey

Related Products Some products may be updated to newer models.

Related Solutions

- Price Inquiry
- Product Inquiry
- Technical Service / Support Inquiry
- > Other Inquiry