

Application News

Software for Efficient Method Development
Ultra High Performance Liquid Chromatograph

Enhancing Method Development Efficiency Using MS Peak Tracking with a Triple Quadrupole Mass Spectrometer

Shinichi Fujisaki

User Benefits

- ◆ Method development is generally performed using LC detectors such as a photodiode array (PDA) detector. However, incorporating mass information obtained from a mass spectrometer enables more accurate peak tracking.
- ◆ By visualizing resolution within the design space, the search for optimal separation conditions in method development can be streamlined without relying on intuition or experience.

■ Introduction

In the process of separation optimization during method development, optimal analytical conditions are explored by varying LC parameters such as mobile phase composition, gradient profile, and column oven temperature. However, accurate peak tracking across multiple chromatograms can be challenging because differences in separation conditions may cause variations in retention times or co-elution of compounds. Although peak tracking based on differences in UV spectra obtained with a PDA detector can be applied, accurate identification of impurities and co-eluting peaks is often difficult using UV information alone. In contrast, combining a PDA detector with a mass spectrometer can improve tracking accuracy, particularly for low-abundance compounds and impurities. This article describes a case study in which the combination of LabSolutions™ MD, a dedicated software for supporting method development, and LCMS-8060RX triple quadrupole mass spectrometer enabled efficient exploration of optimal separation conditions through accurate MS-based peak tracking for the simultaneous analysis of six small-molecule pharmaceutical compounds.

■ Analytical Conditions

Table 1 summarizes the analytical conditions used for optimizing the simultaneous analysis of six small-molecule pharmaceutical compounds. Gradient elution was performed using 0.1% formic acid in water as the aqueous mobile phase and acetonitrile as the organic mobile phase. The separation of each compound was optimized by varying the gradient conditions. Specifically, gradient times of 4, 5, and 6 minutes (three conditions) were combined with final gradient concentrations of 50%, 60%, and 70% (three conditions), resulting in a total of nine analytical conditions.

Table 1 Analytical Conditions

Sample	: (1) Quinidine, (2) Lidocaine, (3) Metoclopramide, (4) Papaverine, (5) Dibucaine, (6) Amitriptyline
Mobile phase	: Pump A : 0.1% formic acid in water : Pump B : Acetonitrile
Column	: Shim-pack Scepter™ C18-120 (100 mm × 3.0 mm I.D., 1.9 μ m) ^{*1}
Injection Vol.	: 0.1 μ L (80 mg/L)

LC Conditions

System	: Nexera™ X3
Time program	: B Conc. 20%(0 min) → X ^{*2} % (Y min) → 20%(Y ^{*3} - Y+4 min)
Column Temp.	: 30 °C
Flow rate	: 0.7 mL/min
Detection (PDA)	: 254 nm (SPD-M40, UHPLC cell)

^{*1}P/N: 227-31013-03

^{*2}X = 50, 60, 70

^{*3}Y = 4, 5, 6

MS Conditions

System	: LCMS-8060RX
Ionization	: ESI, positive mode
Mode	: MRM and Q3 SCAN (m/z 100-1000)
Nebulizing gas flow	: 3 L/min
Heating gas flow	: 15 L/min
Interface Temp.	: 400 °C
Desolvation Temp.	: 650 °C
DL Temp.	: 250 °C
Block heater Temp.	: 400 °C
Drying gas flow	: 3.0 L/min
Interface voltage	: +1.0 kV
Notes	: Flow split 1:4 (MS : waste) prior to MS

■ MS-Based Peak Tracking with LCMS-8060RX

Fig. 1 shows automatic peak tracking of each compound performed by LabSolutions MD, using chromatograms (partially shown) obtained under different gradient conditions and mass information acquired with LCMS-8060RX. LabSolutions MD enables accurate tracking of impurities and co-eluting compounds based on the pre-registered MRM transitions of each compound (Table 2). For compounds without predefined MRM transitions, peak tracking can also be performed by using mass information from scan measurements (full scan without fragmentation within a specified m/z range), allowing all compounds to be tracked based on mass information. As shown in Fig. 1, although the retention times and separation of compounds varied with changes in gradient time and final gradient concentration, all compounds were accurately tracked. Compound (2) in Fig. 1 is an impurity of quinidine. Because its UV spectrum showed a high similarity (≥ 0.99) to that of quinidine (Fig. 2), peak tracking using UV spectra alone was considered difficult. However, it was correctly identified using mass information (m/z 327.1; Fig. 3) obtained from scan measurements. In addition, dibucaine (Fig. 1, (6)) and amitriptyline (Fig. 1, (7)) were co-eluted, but accurate tracking was achieved even for these unresolved peaks by using product ion obtained from MRM measurements. The MRM chromatograms of dibucaine (Fig. 1, (6)) and amitriptyline (Fig. 1, (7)) are shown in Fig. 4 for reference.

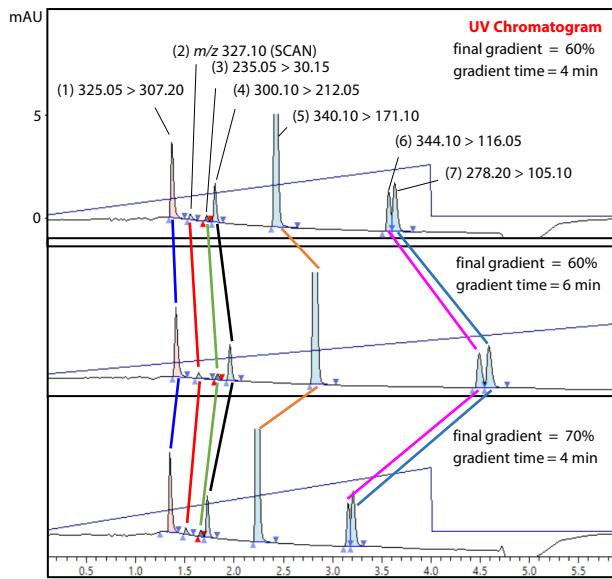


Fig. 1 MS-Based Peak Tracking
(1) Quinidine, (2) Impurity of Quinidine (3) Lidocaine
(4) Metoclopramide, (5) Papaverine, (6) Dibucaine, (7) Amitriptyline

Table 2 MRM Transitions for Each Compound

	Compound	MRM transition
(1)	Quinidine	325.05 > 307.20
(2)	Impurity of Quinidine	-
(3)	Lidocaine	235.05 > 30.15
(4)	Metoclopramide	300.10 > 212.05
(5)	Papaverine	340.10 > 171.10
(6)	Dibucaine	344.10 > 116.05
(7)	Amitriptyline	278.20 > 105.10

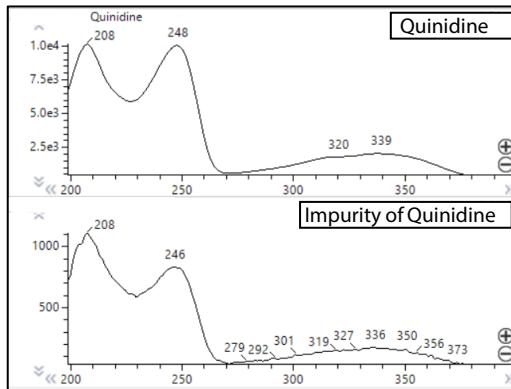


Fig. 2 Comparison of UV Spectra between Quinidine and Its Impurity

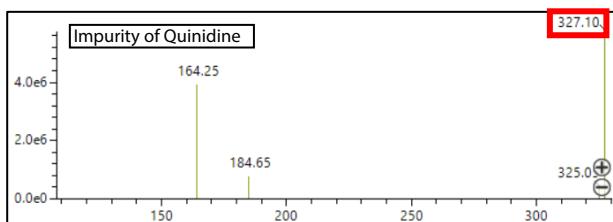


Fig. 3 MS Spectrum of Impurity of Quinidine by Scan Measurement

Fig. 4 MRM Chromatograms
Dibucaine (Upper) and Amitriptyline (Lower)

■ Visualization of Resolution by Design Space

LabSolutions MD streamlines the search for optimal separation conditions by visualizing resolution within a design space. Fig. 5 shows the design space for the resolution between dibucaine and amitriptyline—the most challenging pair to separate—with gradient time plotted on the vertical axis and final gradient concentration on the horizontal axis. The red area in the figure represents regions of high resolution, while the blue area represents regions of low resolution. The design space evaluation indicates that better separation is obtained with longer gradient times and lower final gradient concentrations. Point A was identified as the optimal separation condition (chromatogram at point A: Fig. 6).

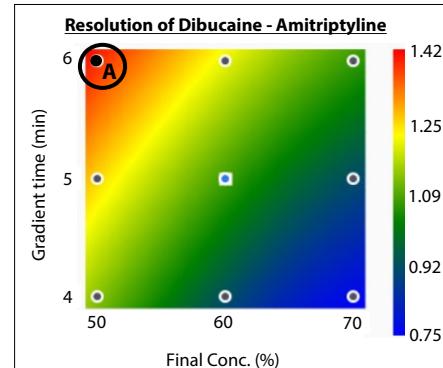


Fig. 5 Design Space of Resolution between Dibucaine and Amitriptyline

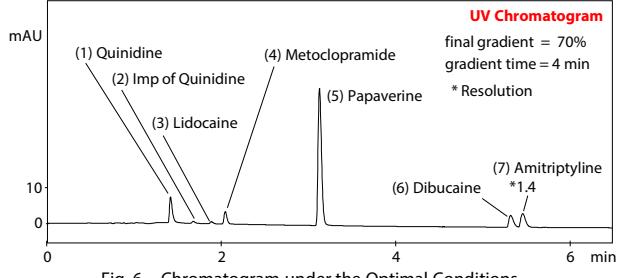


Fig. 6 Chromatogram under the Optimal Conditions

■ Conclusion

The efficient method development using LabSolutions MD and LCMS-8060RX triple quadrupole mass spectrometer is presented. By utilizing the mass information obtained from LCMS-8060RX, precise peak tracking can be achieved even for impurities and co-eluted compounds. In addition, visualization of resolution within a design space allows efficient exploration of optimal separation conditions without relying on the intuition and experience of the analyst.

Nexera, LabSolutions and Shim-pack Scepter are trademarks of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

 SHIMADZU

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See <http://www.shimadzu.com/about/trademarks/index.html> for details.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

➤ Please fill out the survey

Related Products

Some products may be updated to newer models.

➤ **Nexera Series Ultra High Performance Liquid C...**

Ultra High Performance Liquid Chromatograph

➤ **LCMS-TQ RX Series Triple Quadrupole LC-MS/MS**

Triple Quadrupole LC-MS/MS

➤ **Method Development System**

Automatic Optimization of Gradient Conditions with...

Related Solutions

➤ **Pharmaceutical and Biopharmaceutical**

➤ **Small Molecule Pharmaceutical**

➤ **Price Inquiry**

➤ **Product Inquiry**

➤ **Technical Service / Support Inquiry**

➤ **Other Inquiry**