> Find components that differ between regions

Example

Extract components "A", "B" and "C", which differ in intensity between regions

Steps

1. ROI settings for "A","B" and "C"
2. Data matrix table calculations
3. Testing
4. PCA
5. PLS

Steps

1. ROI settings for "A","B" and "C"
2. Data matrix table calculations
3. Testing
4. PCA
5. PLS

1.1 Select "Differential analysis"

1.2 Add data file (.imdx)

1.3 ROI settings

Apply settings for the region of interest (ROI)

1.4 ROI settings

1.5 ROI settings

After drawing the ROI, apply attributes.

1.6 ROI settings

Select attributes for each ROI in the "Attributes" column. Attributes can be added or edited.
The names of the ROIs can be changed.

1.7 ROI settings

1.8 ROI settings

2.1 Pre-processing settings

2.2 Pre-processing settings

Set the "Normalize" criteria. TIC is generally used.

2.3 Data matrix settings

Apply settings to the target m / z

2.4 Data matrix settings

Non-target: cut out fixed widths of signal intensity from the spectrum.
Target: specify particular m / z values and the tolerance width.

2.5 Data matrix calculations

Carry out data matrix calculations.

2.6 Running calculations

If pre-processing calculations have not yet been carried out, they will be run here at the same time. If there are a large number of target compounds, the calculations will take longer.

2.7 Data matrix calculations are complete

Steps

1. ROI settings for "A","B" and "C"
2. Data matrix table calculations
3. Testing
4. PCA
5. PLS

3．1 Testing

料数
pac Catalution
杆雨
Carry out testing．
For 2 groups a t－test is used；for 3 or more ANOVA is used．

par reant
6

$\underset{\text { pis catulution }}{\boxed{Z}}$
Each measurement point in each ROI is treated as part of the sample．

3.2 Dialogue window during calculations

3.3 Testing results

3.4 Testing results

Data Matrix Table							\cdots
No.	Use	Tag	Label	G2(Ratio(Grou...	P Value (ANOVA) -	\checkmark ROl001	\checkmark,
928	\checkmark		885.3849-885.5849	0.000	7.419e-125	41856.597	
933	\checkmark		886.3849-886.5849	0.000	$1.079 \mathrm{e}-085$	23175.889	
929	\checkmark		885.5849-885.7849	0.000	$2.340 \mathrm{e}-072$	4013.716	
938	V		887.3849-887.5849	0.000	$2.249 \mathrm{e}-060$	10379.325	
548	\checkmark		809.3849-809.5849	0.000	$8.966 \mathrm{e}-056$	202724.123	
478	\checkmark		795.3849-795.5849	0.000	$1.284 \mathrm{e}-052$	922842.629	1
553	\checkmark		810.3849-810.5849	0.000	$6.045 \mathrm{e}-033$	97909.708	
934	\checkmark		886.5849-886.7849	0.000	$5.981 \mathrm{e}-031$	3494.000	
479	\checkmark		795.5849-795.7849	0.000	$1.601 \mathrm{e}-027$	67228.803	
930	V		885.7849-885.9849	0.000	$1.449 \mathrm{e}-026$	1092.085	
688	\checkmark		837.3849-837.5849	0.000	$4.410 \mathrm{e}-025$	52410.942	
483	\checkmark		796.3849-796.5849	0.000	$2.943 \mathrm{e}-023$	434814.496	
939	\checkmark		887.5849-887.7849	0.000	$1.974 \mathrm{e}-021$	1697.613	
67	V		713.1849-713.3849	0.000	$1.885 \mathrm{e}-017$	4514.567	
488	\checkmark		797.3849-797.5849	0.000	$7.436 \mathrm{e}-017$	170158.289	
908	\checkmark		881.3849-881.5849	0.000	$1.358 \mathrm{e}-016$	35354.833	

Slide the scroll bar to the right to view the P -values amongst the testing results.

3.5 Testing results

Clicking the header row (the top row) to sort the column. Click once more and the column will be sorted in the opposite order.
The smaller the P-value, the greater the difference between groups, so we choose a smaller one.

3.6 Right-click \rightarrow "Add MS Image"

3.7 Select the data file and click "OK"

The "Add MS Image" dialogue window opens.
If multiple data files are read in, select here which data files images should be added. (In this example, there is only one imdx file.)

3.8 The MS image is added

3.9 Distinctiveness of ROI3

Overlaying the ROIs, we see that ROI3 (in green) is a distinctive region.

3.10 Displaying a box plot

3.11 Histogram Adjustment

Steps

1. ROI settings for "A","B" and "C"
2. Data matrix table calculations
3. Testing
4. PCA
5. PLS

4.1 PCA (Principal Component Analysis)

4.2 PCA parameter settings

In general these settings are fine.

4.3 PCA parameter settings

Select from the "Pre-processing" menu to change the way the signal intensity is handled.

- "None": Signal intensity remains as-is
- "Centre": Sets the average of signal intensities for each m / z within the ROIs to 0
- "Autoscale": In addition to centring, sets the standard deviation of changes between ROIs to 1
- "Pareto scale": In addition to centring, divides the changes between ROIs by the square root of the standard deviation. The result is in between "centre" and "autoscale".

4.4 PCA calculations

4.5 PCA results at a glance

The PCA calculation results are displayed. If there are 3 or more principal components axes, multiple scatter plots will be displayed. Select the necessary scatter plots and click "View Details".

4.6 PCA results screen

The data points on the score plot show the m / z set for each ROI, and the data points on the loading plot show the m / z set when creating the data matrix.
The loading spectrum shows the weight (loading) of each m / z for each principal component (PC).

4.7 PCA results screen, zooming

The data points on the score plot show the m / z set for each ROI, and the data points on the loading plot show the m / z set when creating the data matrix.

The loading spectrum shows the weight (loading) of each m / z for each principal component (PC).

If "Zoom" is selected, dragging the cursor over the plot will zoom in or out.
The mouse wheel can also be used to zoom in or out.

4.8 Selecting data points

If "Select" is selected, dragging the cursor over the plots will highlight the data points within that area.

The following operations are possible using the sidebar.

- Add colours (tagging: these colours will also be applied to other graphs, data matrices, and MS image list)
- Show labels
- Add MS image

4.9 Add colours to data points (tagging)

If "Select" is selected, dragging on the plot will select data points within the range.

The following operations are available from the side menu - Colorize (tagged: this color will be the same in other graphs, data matrix tables, and MS ImageList)

- Display labels
- Add MS Images

4.10 Add colours to data points (tagging)

Colours of the selected data points can be changed.
These colours will be applied to other graphs, the data matrix tables and the MS image list.

4.11 Display data point labels

Labels for data points are displayed.

4.12 Create an MS image from the data points

Adds the MS image of the selected data points to the main screen.

4.13 Add MS image

4.14 Results are displayed on the main screen

 matrix table.

Steps

1. ROI settings for "A","B" and "C"
2. Data matrix table calculations
3. Testing
4. PCA
5. PLS

Example

Isolate a component that is present in "A" but not in "B" or "C"

5.1 PLS (Partial Least Squares)

5.2 PLS parameter settings

5.3 PLS parameter settings

5.4 PLS parameter settings

5.5 PLS calculations

5.6 PLS calculations

If the message "The data set is invalid. Increase the Y value variation or set the number of latent variables to [Manual] and try again" appears,
Please try

- Select "Manual" in PLS parameters
or
- Increase the number of data sets per Y value This error is due to the insufficient number of data for cross-validation.

5.7 PLS results screen

On the PLS results screen the following are displayed:

- PRESS: No. of axes (only shown in automatic mode)
- Expected values vs. observed values
- Regression vectors

5.8 PLS results screen

It is possible to select components with large regression coefficients from the regression vector graph, but it is easier to select them from the data matrix table on the main screen.

5.9 PLS coefficients are displayed

5.10 PLS coefficients in the data matrix table

Data Matrix Table
Click on the "PLS Coefficient" header and the column will be sorted.

No.	Use	Tag	Label	m/z	PLS Coefficient ${ }^{\text {- }}$	\checkmark ROl001	\checkmark ROl002
186	\checkmark		884.9849-885.9849	885.4849	-4.1088-604	52242.364	91789.39
96	\checkmark		794.9849-795.9849	795.4849	-3.880e-004	1029824.289	1145936.17
97	\checkmark		795.9849-796.9849	796.4849	-3.709e-004	561465.069	629022.64
68	\checkmark		766.9849-767.9849	767.4849	-2.687e-004	89399.480	105269.24
187	\checkmark		885.9849-886.9849	886.4849	-2.665e-004	34271.553	51295.15
158	\checkmark		856.9849-857.9849	857.4849	-2.542e-004	35594.351	44503.00
99	\checkmark		797.9849-798.9849	798.4849	-1.935e-004	73407.900	86617.69
159	\checkmark		857.9849-858.9849	858.4849	-1.902e-004	21195.334	27205.04
98	\checkmark		796.9849-797.9849	797.4849	-1.869e-004	237984.460	263831.29
69	\checkmark		767.9849-768.9849	768.4849	-1.688e-004	48100.708	54925.78
70	\checkmark		768.9849-769.9849	769.4849	-1.609e-004	23381.429	26532.23
188	\checkmark		886.9849-887.9849	887.4849	-1.588e-004	19271.791	25189.45
184	\checkmark		882.9849-883.9849	883.4849	-1.575e-004	30225.061	33169.70
164	\checkmark		862.9849-863.9849	863.4849	-1.199e-004	7421.796	9826.31
156	\checkmark		854.9849-855.9849	855.4849	-1.084e-004	8363.467	9994.45
67	\checkmark		765.9849-766.9849	766.4849	-1.057e-004	23124.307	24718.15
42	\checkmark		740.9849-741.9849	741.4849	-8.297e-005	7289.580	8878.51
160	\checkmark		858.9849-859.9849	859.4849	-8.150e-005	13012.774	14481.37
79	\checkmark		777.9849-778.9849	778.4849	-8.065e-005	18737.652	20054.06
185	\checkmark		883.9849-884.9849	884.4849	-8.019e-005	18916.466	20224.82

5.11 Sorted PLS coefficients

5.12 Tagging

5.13 Tagging

Data Matix Table In the "tag" column, the colour you selected as a tag are displayed.

No.	Use	Taq	Label	m / z	PLS Coefficient ${ }^{\text {- }}$	\checkmark ROI001	\checkmark ROI002
186	\checkmark		884.9849-885.9849	885.4849	-4.106e-004	52242.364	91789.39
96	\checkmark		794.9849-795.9849	795.4849	-3.880e-004	1029824.289	1145936.17
97	\checkmark		795.9849-796.9849	796.4849	-3.709e-004	561465.069	629022.64
68	\checkmark		766.9849-767.9849	767.4849	-2.687e-004	89399.480	105269.24
187	\checkmark		885.9849-886.9849	886.4849	-2.665e-004	34271.553	51295.15
158	\checkmark		856.9849-857.9849	857.4849	-2.542e-004	35594.351	44503.00
99	\checkmark		797.9849-798.9849	798.4849	-1.935e-004	73407.900	86617.69
159	\checkmark		857.9849-858.9849	858.4849	-1.902e-004	21195.334	27205.04
98	\checkmark		796.9849-797.9849	797.4849	-1.869e-004	237984.460	263831.29
69	\checkmark		767.9849-768.9849	768.4849	-1.688e-004	48100.708	54925.78
70	\checkmark		768.9849-769.9849	769.4849	-1.609e-004	23381.429	26532.23
188	\checkmark		886.9849-887.9849	887.4849	-1.588e-004	19271.791	25189.45
184	\checkmark		882.9849-883.9849	883.4849	-1.575e-004	30225.061	33169.70
164	\checkmark		862.9849-863.9849	863.4849	-1.199e-004	7421.796	9826.31
156	\checkmark		854.9849-855.9849	855.4849	-1.084e-004	8363.467	9994.45
67	\checkmark		765.9849-766.9849	766.4849	-1.057e-004	23124.307	24718.15
42	\checkmark		740.9849-741.9849	741.4849	-8.297e-005	7289.580	8878.51
160	\checkmark		858.9849-859.9849	859.4849	-8.150e-005	13012.774	14481.37
79	\checkmark		777.9849-778.9849	778.4849	-8.065e-005	18737.652	20054.06
185	\checkmark		883.9849-884.9849	884.4849	-8.019e-005	18916.466	20224.82
<							

5.14 Adding MS Images

Right-click and select "Add MS Image"

5.15 Create an MS image from the PLS results

MS images have been created for m / z values that are rich in ROI1.
Tags have also been applied to the MS images.

